首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 125 毫秒
1.
采用自制的H型电解池开展了KHCO3溶液中电化学还原CO2制甲酸的研究. 研究发现,在电解池中长时间电解时阴阳两极间的电压(槽电压)会持续升高,导致电解过程不可持续. 经过恒电位电解、恒电流电解、pH测试以及电解前后阳极室KHCO3浓度分析等实验研究,作者发现,这是由以下过程引起的:阳极上的析氧反应产生的H+与电解液中的HCO3-反应生成水和CO2,导致阳极室的HCO3-的消耗,之后阳极室的K+被迫扩散进入阴极室而导致阳极室电解质浓度下降. 因此,阳极室电解液导电性下降,进而引起阳极电位的升高. 研究发现,阳极电解液具有碱性时,都可能发生此种现象,因此,为了保证电解过程可持续且保持高的能量转换效率,阳极液的电解质不能是任何具有碱性的物质.  相似文献   

2.
工业规模的化石能源消耗导致大气中二氧化碳含量不断增加,CO2转化利用成为人们日益关注的热点问题. 金属铜因其成本低廉、储量丰富,并且具有独特的CO2亲和力能够生成多碳化合物,是目前CO2电还原中研究最为广泛深入的电极材料. 由于阴、阳离子的特征吸附对Cu电极性能有显著影响,并且不同反应体系中对Cu电极上CO2吸附、活化影响也有所不同,因此导致金属Cu电极上报道的电催化活性、产物种类与选择性等都非常宽泛. 基于此,有必要系统地研究各种反应条件对金属Cu电极电催化CO2还原性能的影响. 作者选择了平均粒径为600 nm的商品化金属Cu颗粒作为电还原CO2的催化剂,研究了不同反应条件包括各种常用电解质溶液、KHCO3的浓度以及H型电解池和流动池. 实验结果表明,浓度为0.5 mol·L -1的KHCO3作为电解质溶液具有较好催化活性和较高的产物分电流密度,流动池可以进一步提高主要产物甲酸盐和CO的分电流密度. 本研究工作从反应条件的角度对CO2还原的电催化转化进行了系统研究,有助于理解电解液和反应器等因素对CO2电还原反应过程的影响规律.  相似文献   

3.
全球CO2排放量持续增长,冲击全球能源格局.CO2电催化转化为高值化学品与液体燃料是实现绿色化工和降低碳排放的有效途径.针对催化剂和电解器的实验室研究为CO2大规模电解奠定了基础.然而具有实用价值的全电解池CO2电解,在工业级电流密度下的CO2转化率、反应活性与稳定性仍较低.电极面积和数量的放大研究发现,由于电场、流场等的复杂多场耦合引起的放大效应,使得反应寿命、能耗等反应性能下降.本文综述了面向CO2规模化电解的关键多尺度研究内容,聚焦实现CO2高效转化的重要挑战和前沿研究进展,并展望了助力实现CO2商业化应用的发展方向.基于聚合物电解质膜并以水作为质子源的低温CO2电解路线是具有工业化应用前景的反应路线之一,能用于制备CO、甲酸、乙烯、乙醇等C1-C3化合物,是当前研究重点.膜电极(MEA)电解器容易在电极面积和数量上扩展,是有望实现大规模部署的CO2电解装置.目前...  相似文献   

4.
二氧化碳(CO2)电催化还原反应利用可再生能源将CO2转化为高值燃料和化学品,是一种新型的碳中和技术。CO2电催化还原反应在电极/电解质界面上进行,因此除催化剂以外,电解质对提高CO2电催化还原反应性能同样至关重要。本文深度剖析了CO2电催化还原反应中的电解质效应,结合近几年的最新研究进展,详细讨论了局部p H、阳离子、阴离子和离子交换膜等电解质组成和性质对电催化活性和产物选择性的影响,阐述了电解质效应的催化作用机制。本文特别强调了电化学原位红外/拉曼等振动光谱在电解质效应机理研究方面的优势以及面向实际应用的膜电极CO2电解器中阴离子、阳离子、水、液体产物等物质传输对活性、选择性、能量效率及CO2利用效率等关键催化性能指标的影响。本文最后提出了当前电解质效应研究中存在的挑战,并展望了未来的研究机遇和发展趋势。  相似文献   

5.
固体氧化物电解池是一种高效、环境友好型的能量转换器件,可以直接将电能转化为化学能. 本文介绍了近年来作者课题组在固体氧化物电解池直接用于CO2还原的研究进展,并以阴极材料为主着重讨论了金属陶瓷电极和混合导电型钙钛矿氧化物电极的研究工作,最后展望了未来固体氧化物电解池直接电解CO2的研究思路和方向.  相似文献   

6.
传统上,RuO2/TiO2复合电极制备是通过在TiO2/Ti基体上多次涂覆含Ru前驱体溶液和随后热分解(TD)来实现的. 为克服上述方法中Ru用量大和利用率低之不足, 本工作主要基于循环伏安法(CV)在TiO2纳米管阵列(TNA)上电沉积RuO2制备RuO2CV/TNA复合电极. SEM、GIXRD和CV结果表明, 电沉积的RuO2为无定型结构, 所制备电极中的Ru用量约为传统的RuO2TD/TNA电极中Ru用量的1/30. 尽管两电极催化CO2还原产物的法拉第效率接近, 但是RuO2CV/TNA电极比RuO2TD/TNA电极展示了更高的还原电流, 较正的初始还原电位和更好的稳定性. 与磷酸盐缓冲溶液中电还原CO2相比,RuO2CV/TNA电极在0.1 mol•L-1 KHCO3中电还原CO2除生成更高法拉第效率的甲酸根和甲烷外,还检测到CO的生成.  相似文献   

7.
以二苯基-1-甲基咪唑膦(dpim)为配体制备了一种新型的配合物催化剂Ni(dpim)2Cl2. 循环伏安研究表明,Ni(dpim)2Cl2配合物在氮气气氛下表现出两步还原的电化学行为,在-0.7 V下为两电子的不可逆还原,在-1.3 V下为单电子准可逆还原. 向电解液中通入CO2后,在-1.3 V下的还原峰变得不可逆,且其峰电流从0.48 mA·cm-2增大到0.55 mA·cm-2. 在质子源(CH3OH)存在的条件下,该还原峰电流可继续增大到0.72 mA·cm-2. 该研究结果表明,Ni(dpim)2Cl2配合物对CO2还原具有良好的电催化性能,且其电催化还原过程符合ECE机理. 在-1.3 V下恒电位电解得到的还原产物主要为CO,催化转换频率(Turnover of Frenquency, TOF)为0.17 s-1.  相似文献   

8.
高温熔融盐具有CO2吸收容量大、电化学窗口宽、高温下反应动力学快等特点,是利用清洁电能大规模捕集和资源化利用CO2颇具实用化潜力的电解液体系. 本文主要介绍作者课题组近十年关于高温熔盐CO2捕集与电化学资源化转化(MSCC-ET)技术的相关研究工作,包括熔融盐电解质对CO2的吸收、阴极过程动力学、电解条件对产物的影响、析氧阳极、电解过程能量效率和CO2捕获潜力,并展望了MSCC-ET技术的发展前景.  相似文献   

9.
为了促进CO2电化学还原(ECR)制备燃料和高值化学品,开发高活性、低成本和高选择性催化剂至关重要.本文通过简单的溶剂热法一步合成超细氧化铜(CuO)纳米颗粒修饰的二维Cu基金属有机框架(CuO/Cu-MOF)复合催化剂.并采用X射线衍射、X射线光电子能谱、傅里叶变换红外光谱、高角环形暗场像-扫描透射电镜、N2吸附/脱附、元素分析谱、CO2吸附等方法进行表征,对CuO/Cu-MOF复合材料的组成、形貌和孔结构等进行了系统研究.结果表明,超细CuO纳米粒子的尺寸为1.4到3.3 nm,均匀修饰在二维Cu-BDC MOF表面.由于其结构中丰富的孔道结构,CuO/Cu-MOF在常压下的CO2吸附量可达5.0 mgCO2 gcat.–1,明显优于商业CuO纳米颗粒.进一步在H型电解池、0.1 mol/L KHCO3电解质溶液中研究了CuO/Cu-MOF的ECR性能;结果表明,在CO2饱和的0.1 mol/L KHCO3电解质溶液中,反应产物包括CO,H2,HCOOH和C2H4.在-1.0至-1.2 V(相对于可逆氢电极,下同)电势范围内,ECR占主导地位;生成C2H4的起始电位为-0.85 V,在-0.9至-1.2 V电势范围内,C2H4是主要产物;电势高于-0.9 V时,CO和HCOOH是主要产物;电势低于-0.9 V时,开始生成CH4,且其含量随过电势增加而增加.通过改变材料合成时的前驱体配比、配体种类和反应温度等可调节CuO/Cu-MOF催化剂对ECR产物的活性和选择性,当对苯二甲酸:硝酸铜摩尔比为3:1、温度为100°C时,制得的CuO/Cu-MOF可在-1.1 V电势下将CO2还原为C2H4,其法拉第效率可达50.0%,显著优于许多文献报道的Cu基电催化剂以及所合成的纯Cu-MOF和纯CuO,其在相同电解条件下生成C2H4的法拉第效率分别为37.6%和25.5%.此外,生成C2H4的几何分电流密度约为7.0 mA cm-2,生成速率为21.0μmol mgcat.–1 h–1,阴极能量效率达到27.7%.催化剂的稳定性测试结果表明,在连续电解10 h后,C2H4的法拉第效率仍保持在45.0%以上.进一步的机理研究表明,CuO/Cu-MOF复合材料中二维金属铜有机框架主体和超细CuO纳米颗粒在ECR反应过程中可协同实现对CO2的吸附和活化,促进C-C耦合,从而高选择性生成C2H4.本文为提高ECR生成C2H4的选择性和活性提供了有效策略.  相似文献   

10.
多组分体系中的协同作用为设计高效的二氧化碳还原电催化剂提供了新的思路. 本工作通过双模板法和化学还原法精心设计制备了大孔/介孔镍氮掺杂碳(Ni-N-OMMC)负载银纳米颗粒复合材料(Ag/Ni-N-OMMC), 用于高效电催化还原CO2为CO. 此复合材料表现出良好的电催化活性, 在CO2饱和的0.1 mol•L–1 KHCO3电解液中, 电位为–1.0 V (相对于可逆氢电极, RHE)时CO的电流密度(JCO)高达33.29 mA•cm–2. 并具有较宽的工作电压范围, 在–0.7~–1.0 V (vs. RHE)下, CO的法拉第效率超过90%. 其优异的电催化性能可能归因于Ag纳米颗粒与具有丰富Ni-N x活性位点的Ni-N-OMMC载体之间的协同效应, 以及三维互联有序大孔/介孔结构提供的高比表面积和高效的质量/电荷传输.  相似文献   

11.
采用原位阳极氧化-煅烧法制备TiO_2纳米管(TiO_2NTs)电极,运用X射线衍射(XRD)、电场发射扫描电子显微镜(FESEM)、X射线光电子能谱(XPS)、双电位阶跃测试等对制备电极进行表征,考察了其在0.1mol?L~(-1) KHCO_3水溶液中电化学还原CO_2的催化活性。结果表明TiO_2NTs电极上电化学还原CO_2的主产物为CH_3OH,CH_3OH由HCOOH和HCHO进一步还原而来。电极制备的最佳煅烧温度为450℃(TiO_2NTs-450),电解电位-0.56 V(vs RHE(可逆氢电极))时反应120 min后,生成CH_3OH的法拉第效率和分电流密度分别为85.8%和0.2 m A?cm~(-2)。与550和650℃煅烧的电极相比,TiO_2NTs-450电极具有更高的催化活性,归因于电极表面更多的三价钛活性位,有利于CO_2吸附,从而对·CO_2-起到稳定的作用,速率控制步骤转变为·CO_2-的质子化反应。  相似文献   

12.
本实验通过模拟植物光合作用,设计制备了新颖的光电联合催化池3D-ZnO/Ni BiVO4/FTO,用电化学沉积法制备了泡沫镍负载的ZnO纳米棒光电阴极和BiVO4光电阳极,以0.1 mol·L^−1 KHCO3水溶液作为电解质,1 mmol·L^−1曙红Y为光敏剂,在−0.6 V硅太阳电池的电压下光电催化还原CO2得到了乙醇、乙酸和甲醇,总产率22.5μmol·L^−1·h^−1·cm^−2。实现了将太阳能贮存为化学能并减少了空气中的CO2,加深了学生对绿色化学和植物Calvin循环机理的理解。  相似文献   

13.
CO2电化学还原反应可以将CO2转化为燃料并同时实现再生能源的有效存储. 目前纳米结构的多相催化剂已经广泛应用于此反应,其中碳负载钯纳米粒子(Pd/C)表现出优异的CO2电化学还原性能. 本工作研究了钯载量对于Pd/C催化剂结构以及其催化CO2还原生成CO反应活性和选择性的影响. 不同载量的Pd/C催化剂通过液相还原方法制备,钯纳米粒子均匀地分散在碳载体上,载量并没有明显改变对纳米粒子的粒径. 在优选的电解质(0.1 mol·L-1 KHCO3)中,CO法拉第效率与载量呈现火山型曲线关系,-0.89 V时载量为20wt%的Pd/C催化剂达到最高的CO法拉第效率(91.2%). 生成CO的几何电流密度随着钯载量的增加而增加,但CO转换频率具有相反的趋势,载量为2.5wt%的Pd/C催化剂具有最高的转换频率. 这种载量对CO2电化学还原反应活性和选择性的影响主要由活性位的数量、反应动力学、中间物种的稳定性以及反应物、中间物种和产物的传质过程等共同决定.  相似文献   

14.
将二氧化碳转化为高附加值的燃料和化学品是缓解当前能源危机和控制温室气体排放的有效策略之一,但此法受限于缺乏高活性与高选择性的电催化剂。因此,我们通过热解含镍金属有机框架结构(MOF)和二氰二胺制得负载高含量镍单原子(7.77% (w))的超薄氮掺杂二维碳纳米片用于电催化还原CO2生成CO。研究发现高温热解能将MOF中Ni2+转化为Ni+-N-C和Ni2+-N-C结构,且Ni+-N-C含量依赖于热解温度——其含量随热解温度增加呈现火山型变化。800 ℃下,Ni2+到Ni+-N-C的转化和石墨化的C生成达到最优水平。Ni+-N-C结构有适宜的*CO中间体结合能,能有效地抑制析氢反应的同时还能促进CO生成。因此,800 ℃热处理制得的材料(Ni-N-C-800)催化CO2生成CO效率最高。调节电解液浓度,能进一步优化电催化性能。当电解液(碳酸氢钾)浓度为0.5 mol·L-1时,Ni-N-C-800的CO生成选择性在较宽电压窗口内(-0.77到-1.07 V vs. RHE)都高于90%,且具有优良的稳定性。这些结果表明,选择合适的前躯体通过调控热解温度以及氮掺杂可以有效提高镍基MOF衍生催化剂的二氧化碳电催化性能。  相似文献   

15.
研究了柱层析硅胶-K2CO3固体碱催化剂的制备条件,并对其进行XRD、FT-IR和SEM表征分析。结果表明,部分K2CO3吸收空气中的CO2生成KHCO3,K2CO3与 KHCO3分散到硅胶表面,增强了催化效果。并考查了催化剂用量、醇油摩尔比、反应时间对生物柴油制备的影响。研究表明,催化剂的制备温度为120℃,催化剂用量为原料油质量的5%,醇油摩尔比为12∶1,反应温度70℃,反应时间2h,生物柴油收率可达95.2%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号