首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cathodes with high cycling stability and rate capability are required for ambient temperature sodium ion batteries in renewable energy storage application. Na3V2(PO4)3 is an attractive cathode material with excellent electrochemical stability and fast ion diffusion coefficient within the 3D NASICON structure. Nevertheless, the practical application of Na3V2(PO4)3 is seriously hindered by its intrinsically poor electronic conductivity. Herein, solvent evaporation method is presented to obtain the nitrogen-doped carbon coated Na3V2(PO4)3 cathode material, delivering enhanced electrochemical performances. N-Doped carbon layer coating serves as a highly conducting pathway, and creates numerous extrinsic defects and active sites, which can facilitate the storage and diffusion of Na+. Moreover, the N-doped carbon layer can provide a stable framework to accommodate the agglomeration of the electrode upon electrode cycling. N-Doped carbon coated Na3V2(PO4)3(NC-NVP) exhibits excellent long cycling life and superior rate performances than bare Na3V2(PO4)3 without carbon coating. NC-NVP delivers a stable capacity of 95.9 mA·h/g after 500 cycles at 1 C rate, which corresponds to high capacity retention(94.6%) with respect to the initial capacity(101.4 mA·h/g). Over 91.3% of the initial capacity is retained after 500 cycles at 5 C, and the capacity can reach 85 mA·h/g at 30 C rate.  相似文献   

2.
Design and fabrication of functional porous air cathode materials with superior catalytic activity is still the key point for non-aqueous lithium-oxygen(Li-O2) batteries. Herein, inspired by the self-standing three-dimensional(3D) structure of the natural spinach leaves, a unique binder-free and self-standing porous Au/spinach cathode for high-performance Li-O2 batteries has been developed. The carbonized spinach leaves serve as a superconductive current collector and an ideal porous host for accommodating catalysts. The Au/spinach cathode could offer enough spaces for accommodating the discharge products, shorten the distance of the oxygen and electrolyte diffusion, and promote the oxygen reduction reaction(ORR) and oxygen evolution reaction (OER) processes. This optimized Au/spinach cathode achieved a high specific area capacity of 7.23 mA‧h/cm2 at a current density of 0.05 mA/cm2 and exhibited excellent stability(280 cycles at 0.05 mA/cm2 with a fixed capacity of 0.2 mA‧h/cm2). The superior performance encourages the construction of more advanced cathode architectures by the use of bio-composites for Li-O2 batteries.  相似文献   

3.
报道了Na2Ti3O7纳米片的原位生长和钠离子电池负极材料的应用。通过简单的腐蚀市售的钛片制备出相互连接的微纳结构的Na2Ti3O7纳米片。此外,腐蚀后的钛片在不用添加导电剂或粘结剂的情况下,可以直接作为电极材料使用。这种电极材料表现出优越的电化学性能,在50 mA·g–1的电流密度下具有175 mAh·g–1的可逆容量,在2000 mA·g–1的电流密度下循环3000周后,其容量仍保持120 mAh·g–1,容量保持率为96.5%。Na2Ti3O7纳米片电极的优越电化学性能归因于二维结构具有较短的离子/电子扩散路径以及无粘结剂结构能有效的增加电极的电子传导能力。结果表明,这种微纳结构能够有效地克服Na2Ti3O7作为电极材料离子/电子导电性差的缺点。因此,这种无粘结剂结构的Na2Ti3O7纳米片负极材料是一种很有潜力的钠离子负极材料。  相似文献   

4.
Sodium ion batteries(SIBs)are promising energy storage devices for smart grid applications due to their low cost and the high abundance of sodium,but few cathode materials of SIBs with high energy density are available for practical applications.Herein,a series of NaNCM ternary materials(NCM=nickel-cobalt-manganese)is obtained by solid-phase reaction with well-regulated temperature and other reaction conditions.XRD results show that impure NiO phase is more likely to occur under high nickel content.The cross-section SEM indicates that the primary particles in the electrode materials are radially distributed along the radial direction,and the internal porous structure is conducive to the infiltration of electrolyte.The initial specific capacities of Na[Ni0.68Co0.10Mn0.22]O2(NaNCM712),Na[Ni0.6Co0.2Mn0.2]O2(NaNCM622)and Na[Ni0.4Co0.3Mn0.3]O2(NaNCM433)at 0.2 C are 165.5,153.1 and 146.8 mA·h/g,and the corresponding capacity retention rates are 63.2%,78.5%and 71.7%after 100 cycles.NaNCM712 possesses the highest initial specific capacity,and NaNCM433 delivers the best rate capability.The rate capabilities of high-nickel and low-cobalt NaNCM cathodes need to be further improved.Moreover,ex-situ XRD pattern reveals the structure evolution(from O3 type to P2 type)during a long cycling charge and discharge process.  相似文献   

5.
Sodium-ion batteries(SIBs)are promising for grid-scale energy storage applications due to the natural abundance and low cost of sodium.Among various Na insertion cathode materials,Na0.44MnO2 has attracted the most attention because of its cost effectiveness and structural stability.However,the low initial charge capacity for Na-poor Na0.44MnO2 hinders its practical applications.Herein,we developed a facile chemical presodiated method using sodiated biphenly to transform Na-poor Na0.44MnO2 into Na-rich Na0.66MnO2.After presodiation,the initial charge capacity of Na0.44MnO2 is greatly enhanced from 56.5 mA·h/g to 115.7 mA·h/g at 0.1 C(1 C=121 mA/g)and the excellent cycling stability(the capacity retention of 94.1%over 200 cycles at 2 C)is achieved.This presodiation strategy would open a new avenue for promoting the practical applications of Na-poor cathode materials in sodium-ion batteries.  相似文献   

6.
锰基氧化物作为锌离子电池正极具有高比容量和低成本等优点, 但在电化学循环过程中不可逆相变、 锰的溶解和电极/电解质界面不稳定导致其在小电流密度、 深度放电条件下的循环性能差. 针对以上问题, 合成了三维(3D)多孔MnOx立方盒子, 并在其表面包覆In2O3层, 获得3D多孔MnOx@In2O3立方盒子. 结果显示, MnOx@In2O3立方盒子具有大量孔径约10 nm左右的孔, 有利于H+和Zn2+的快速传输; In2O3包覆层均匀包覆于3D多孔MnOx立方盒子的孔壁上, 有利于抑制MnOx在电化学循环过程中的不可逆相变和锰的溶解, 稳定电极/电解质界面. 电化学测试结果表明, 该3D多孔MnOx@In2O3电极在0.3 A/g的小电流密度、 深度放电条件下能稳定循环400次以上, 容量保持260 mA·h/g; 在1. 8 A/g电流密度下可稳定循环4000次以上, 容量保持81 mA·h/g; 即使在高电流密度6.0 A/g下仍保持73.4 mA·h/g的高可逆容量. 恒电流间隙滴定(GITT)和循环伏安测试结果表明, 3D多孔MnOx@In2O3电极比3D多孔MnOx具有更高的离子扩散速率, 有利于提升其高倍率容量. 电化学阻抗谱结果表明, 3D多孔MnOx@In2O3电极具有比3D多孔MnOx更稳定的电极/电解质界面, 有利于提升其循环寿命. 2000次循环后的扫描电子显微镜(SEM)结果表明, MnOx@In2O3电极表面仍分布少量In2O3, 以确保电极/电解质界面和循环的稳定性.  相似文献   

7.
具有两种不同阳离子的二元金属氧化物在钠离子电池中可发生可逆的多电子反应,是一类非常具有应用前景的高容量负极材料。在本项工作中,通过离子交换法和化学剥离法得到HTiNbO_5纳米片,采用水热法将其与蔗糖复合再经由后续热处理得到碳包覆的Ti_2Nb_2O_9纳米片材料。碳包覆的Ti_2Nb_2O_9纳米片可用作钠离子电池的负极材料,具有更高的电子导电性和多的反应活性点以及快速的离子传输通道,在50 m A?g~(-1)的电流密度下具有265.2 m Ah?g~(-1)的可逆容量。在0.5A?g~(-1)的大电流密度下,循环200圈之后比容量为160.9 m Ah?g~(-1) (容量保持率75.3%)。研究结果表明Ti_2Nb_2O_9/C纳米片在钠离子电池中具有出色的充放电性能和循环稳定性,为钠离子电池负极材料提供了可行的新选择。  相似文献   

8.
Metal selenides as anode materials for sodium-ion batteries have attracted considerable attention owing to their high theoretical specific capacities and variable composition and structures.However,the achievement of long cycle life and superior rate performance is challenging for these selenide materials due to the volume variation upon cycling.Herein,a composite composed of a new binary-metal selenide[Cu2SnSe3(CSS)]and carbon nanotubes(CNTs)was constructed via a hydrothermal process followed by calcination at 600℃.Benefited from the unique structure of binary-metal selenide and the conductive network of CNTs,the Cu2SnSe3/carbon nanotubes(CSS/CNT)composite exhibits excellent electrochemical performance when used as an anode material for sodium-ion batteries.A reversible specific capacity of 399 mA·h/g can be maintained at a current density of 100 mA/g even after 100 cycles.This work provides a promising strategy for rational design of binary-metal selenides upon delicate crystal phase control as electrode materials.  相似文献   

9.
Flexible asymmetric supercapacitor is fabricated with three dimensional(3D)Fe2O3/Ni(OH)2 composite brush anode and Ni(OH)2/MoO2 honeycomb cathode.Particularly for 3D composite brush anode,a layer of thin Fe2O3 film is firmly adhered on a 3D Ni brush current collector with the assist of Ni(OH)2,functioning as both adherence layer and pseudocapacitive active material.The unique 3D Ni brush current collector possesses large surface area and stretching architecture,which facilitate to achieve the composite anode with high gravimetric capacitance of 2158 F/g.In terms of cathode,Ni(OH)2 and MoO2 have a synergistic effect to improve the specific capacitance,and the resulting Ni(OH)2/MoO2 honeycomb cathode shows a very high gravimetric capacitance up to 3264 F/g.The asymmetric supercapacitor(ASC)has balanced cathode and anode,and exhibits an ultrahigh gravimetric capacitance of 1427 F/g and an energy density of 476 W·h/kg.The energy density of ASC is 3-4 times higher than those of other reported aqueous electrolyte-based supercapacitors and even comparable to that of commercial lithium ion batteries.The device also shows marginal capacitance degradation after 1000 cycles'bending test,demonstrating its potency in the application of flexible energy storage devices.  相似文献   

10.
金属锂由于其高的比容量,低的电极电势和轻质等特点被认为是下一代高能量密度锂金属二次电池负极材料的最佳选择。然而,充放电循环中不均匀的锂沉积会导致严重的体积变化和大量的锂枝晶形成,从而影响了电池的库伦效率甚至会带来严重的安全隐患。为此,本文设计了一种亲锂的三维二硫化锡@碳纤维布复合基底材料,并作为集流体将其应用于金属锂电池上。一者,高比表面积的三维碳纤维骨架可以适应充放电过程中的体积变化并且有效地降低局部电流密度,从而确保锂的均匀沉积。二者,表面修饰的SnS2层在锂沉积过程中可以形成Li-Sn合金界面层,诱导锂的沉积并降低过电势。最终,实验结果表明:使用所制备的复合集流体与金属锂搭配组成的半电池可以在5 mA·cm-2的高电流密度下以>98%的库伦效率稳定循环100周以上。此外,在承载10 mAh·cm-2的金属锂后,复合的锂负极无论是在对称电池还是与磷酸铁锂组装成的实际电池中,均可以在高的电流密度下实现稳定的循环。我们相信这一复合的集流体构建策略对于设计安全稳定的锂金属电池或器件具有重要意义。  相似文献   

11.
通过共沉淀以及后续的气相硫化成功制备了横向边长约为2μm,纵向厚度约为30 nm的NiCo_2S_4六角片,并研究了其作为钠离子电池负极材料的电化学性能。电化学性能测试结果显示在1000 mA·g~(-1)的电流密度下,NiCo_2S_4电极循环60次后仍然可保持约387mAh·g~(-1)的可逆比容量。此外,NiCo_2S_4电极还具有良好的倍率性能,在200、400、800、1000和2000mA·g~(-1)的电流密度下,容量分别为542、398、347、300和217mAh·g~(-1)。通过进一步动力学机制分析发现,NiCo_2S_4电极的良好的倍率性能得益于其二维片层状结构诱导产生的赝电容。上述结果表明,NiCo_2S_4纳米六角片是一种极具潜力的钠离子电池负极材料。  相似文献   

12.
采用溶液燃烧法制备了化学组成均一的尖晶石型(Cr0.2Fe0.2Mn0.2Ni0.2M0.23O4(M=Co,Zn,Mg)高熵氧化物(HEOs)纳米晶粉体,并将3种高熵氧化物用作锂离子电池负极材料,研究了活性过渡金属Co和Zn阳离子与非活性Mg阳离子对电化学性能的影响.结果表明,由于具有高构型熵稳定的晶体结构,3种高熵氧化物均表现出优异的循环稳定性,其中含有非活性Mg离子的高熵氧化物(Cr0.2Fe0.2Mn0.2Ni0.2Mg0.23O4不仅具有更高的初始比容量(1300 mA·h/g)和倍率性能(在3 A/g电流密度下比容量约为450 mA·h/g),且在循环500次后Li+的扩散系数为其它2种高熵氧化物的3倍以上.(Cr0.2Fe0.2Mn0.2Ni0.2Mg0.23O4电化学性能提高的原因是非活性Mg离子不仅避免了锂化过程中活性物质的团聚,还提高了锂离子的扩散系数.  相似文献   

13.
采用水热法结合热处理制备了具有高结晶性的V2O5,利用X射线衍射仪、球差校正扫描透射电子显微镜和扫描电子显微镜对V2O5的物相和形貌进行了表征,发现制备的V2O5择优取向生长并且具有良好的结晶性.电化学测试结果表明,以V2O5为正极材料的电池在电流密度为0.5 A/g下首次放电比容量约为340 mA·h/g.在电流密度为5 A/g下电池的首次放电比容量为170 mA·h/g,并且循环100次后衰减为50 mA·h/g.对不同放电态的V2O5正极材料的物相进行了分析,得出了V2O5正极材料在充放电过程中发生了锌离子和质子共嵌入(脱出)的反应机理;V2O5正极材料在充放电过程中发生的非晶化和副产物碱式硫酸锌的生成是导致以V2O5作为水系锌离子电池正极材料的电池系统发生容量衰减的主要原因.  相似文献   

14.
镍基层状氧化物NaNiO2钠离子电池材料具有高电压和高容量的特性,且制备方法较为简单,但姜-泰勒(Jahn-Teller)效应使其在高倍率循环下容量较低以及在高电压(4.5 V)下无法稳定循环。通过调节溶胶-凝胶工艺的条件,设计、合成了Na2/3Mn1/3Bi1/3Ni1/3O2片层状金属氧化物,并将其作为正极活性材料,在空气环境中组装成钠离子电池,进行电化学测试,考察Bi、Mn掺入量对电池电化学影响。研究结果表明:当金属Mn和Bi共掺时,在1.2~4.5 V宽电压范围内,电池在循环50周后容量为90.39 mAh·g-1。在2.0~4.0 V电压范围内1.0C (115 mA·g-1)倍率下恒流充放电50周后的容量保持率为96.96%,循环850周后的保持率为80.15%,具有良好的循环稳定性和安全性。  相似文献   

15.
由于具有高安全性和优异的循环稳定性,二氧化钛(TiO2)作为负极材料被广泛地应用于锂离子电池领域。但是较差的导电性和离子传输速率限制了TiO2的进一步应用和发展。鉴于此,我们以花状NH2-MIL-125 (Ti)为前驱体和硬模板,成功合成出了具有花状结构的超细纳米TiO2/多孔氮掺杂碳片(N-doped porous carbon)复合物(记为FL-TiO2/NPC)。过程中所制备的纳米TiO2-金属有机构架(Ti-MOF)展现出由二维褶皱多孔纳米片堆积、组装而成的花状结构。一方面,二维褶皱纳米片包含TiO2纳米颗粒可以增大活性物质与电解液的接触面积;另一方面,氮掺杂多孔碳基体可以提高整体复合物的导电性和结构完整性。将所获得的FL-TiO2/NPC作为负极组装成的锂半电池, 在0.5 A·g-1、300圈后仍有384.2 mAh·g-1以及在1 A·g-1、500圈仍有279.1 mAh·g-1的比容量。进一步性能测试表明,在2 A·g-1、2000圈长循环测试后,其仍能保持256.5 mAh·g-1的比容量和接近100%的库伦效率。该优异的电化学活性和稳定性主要起源于材料独特的花状结构。我们的合成策略为今后制备高储锂性能的金属氧化物/多孔氮掺杂碳负极提供了一种新的思路。  相似文献   

16.
Lithium-sulfur(Li-S) batteries with high energy densities have received increasing attention. However, the electrochemical performance of Li-S batteries is still far from the satisfactory of the practical application, which can be mainly attributed to the shuttling of polysulfides and the slow reaction kinetics of polysulfide conversion. To address this issue, a 3D porous carbon structure constructed by 2D N-doped graphene and 1D carbon nanotubes with embedded Fe3C/Fe nanoparticles(NG@Fe3C/Fe) was designed and prepared by a simple programmed calcination method for the modification of polypropylene(PP) separator. The Fe3C/Fe nanoparticles demonstrate an excellent catalytic conversion and strong chemisorption towards polysulfides, while the unique architecture of N-doped graphene promotes the Li+/electron transfer and the physical adsorption of polysulfides. The electrochemical performance of the Li-S batteries with the NG@Fe3C/Fe-modified separator is significantly improved. A large discharge capacity of 1481 mA∙h∙g-1 is achieved at 0.2 C(1 C=1675 mA/g), and a high capacity of 601 mA∙h∙g-1 is maintained after discharged/charged for 500 cycles at a current rate of 1 C. This work provides a new approach for the development of high-performance Li-S batteries through the modification of the PP separator by rationally designed composites with large adsorption capability to polysulfides, good wettability to the electrolyte and high catalytic property.  相似文献   

17.
Recently,sodium-ion batteries gradually become the promising alternative to lithium-ion batteries because of cost considerations.In this work,a kind of Bi2MoO6 nanosheets@N,S codoped graphene composite is designed and fabricated for sodium storage applications.Detailed characterizations are employed to investigate its morphology,structure and chemical compositions.When evaluated as an anode material for sodium-ion batteries,the as-prepared composite is able to display a specific capacity of 254 mA·h/g after 50 cycles at a current density of 0.2 A/g,and 186 mA·h/g at 1.6 A/g during the rate capability test.As a result,the further morphology and structure optimization is still required for high performance sodium-ion batteries.  相似文献   

18.
The application of transition metal dichalcogenides(TMDs) as anode materials in sodium-ion batteries (SIBs) has been hindered by low conductivity and poor cyclability. Herein, we report the synthesis of CoxFe1-xS2 bimetallic sulfide/sulfur-doped Ti3C2 MXene nanocomposites(CoxFe1-xS2@S-Ti3C2) by a facile co-precipitation process and thermal-sulfurization reaction. The interconnected 3D frameworks consisting of MXene nanosheets can effectively buffer the volume change and enhance the charge transfer. In particular, sulfur-doped MXene nanosheets provide rich active sites for sodium storage and restrain sulfur loss during charging/discharging processes, leading the increase of specific capacity and cycling the stability of anode materials. As a result, CoxFe1-xS2@S-Ti3C2 anodes exhibited high capacity, high rate capability and long cycle life(399 mA·h/g at 5 A/g with an 94% capacity retention after 600 cycles).  相似文献   

19.
P2-type layered oxide Na0.67Fe0.5Mn0.5O2 is recognized as a very promising cathode material for sodium-ion batteries due to the merits of high capacity, high voltage, low cost, and easy preparation. However, its unsatisfactory cycle and rate performances remain huge obstacles for practical applications. Here, we report a strategy of SnO2 modification on P2-type Na0.67Fe0.5Mn0.5O2 to improve the cycle and rate performance. Scanning electron microscope(SEM) and transmission electron microscope(TEM) images indicate that an insular thin layer SnO2 is coated on the surface of Na0.67Fe0.5Mn0.5O2 after medication. The coating layer of SnO2 can protect Na0.67Fe0.5Mn0.5O2 from corrosion by electrolyte and the cycle performance is well enhanced. After 100 cycles at 1 C rate(1 C=200 mA/g), the capacity of SnO2 modified Na0.67Fe0.5Mn0.5O2 retains 83 mA·h/g(64% to the initial capacity), while the capacity for the pristine Na0.67Fe0.5Mn0.5O2 is only 38 mA·h/g(33.5% to the initial capacity). X-Ray photoelectron spectroscopy reveals that the ratio of Mn4+ increases after SnO2 modification, leading to less oxygen vacancy and expanded lattice. As a result, the capacity of Na0.67Fe0.5Mn0.5O2 increases from 178 mA·h/g to 197 mA·h/g after SnO2 modification. Furthermore, the rate performance of Na0.67Fe0.5Mn0.5O2 is enhanced with SnO2 coating, due to high electronic conductivity of SnO2 and expanded lattice after SnO2 coating. The capacity of SnO2 modified Na0.67Fe0.5Mn0.5O2 at 5 C increases from 21 mA·h/g(pristine Na0.67Fe0.5Mn0.5O2) to 35 mA·h/g.  相似文献   

20.
以Fe2O3为铁源原料, 利用热还原法成功地制备了LiFePO4/C复合材料. 用XRD以及SEM对材料的晶体结构以及表面形貌进行了表征. 通过循环伏安和充放电测试研究了材料的电化学性能. 研究结果表明, 于700 ℃下制备的LiFePO4/C复合材料在0.1C的倍率下可以得到放电容量144.8 mA·h/g, 在循环160次后, 容量仍保持在141.4 mA·h/g. 这种以廉价的Fe2O3代替目前常用的二价铁盐原料方法, 具有减少LiFePO4合成成本的优点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号