首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以NiSO4和MnSO4为原料,在用共沉淀法经二次干燥制备锂离子电池正极材料LiNi0.5Mn1.5O4的前驱体时,加入水合肼进行还原处理.实验结果发现:经还原处理的前驱体制备正极材料LiNi0.5Mn1.5O4的充放电比容量远远高于同样条件下不经水合肼还原处理的前驱体制备的正极材料的充放电比容量,而且处理前驱体制备的正极材料在高倍率放电条件下电化学行为更好.粉末X射线衍射(XRD)和扫描电镜(SEM)测试结果表明,用还原剂水合肼处理的前驱体合成的样品为单一的尖晶石结构,晶粒呈规则的八面体形貌,没有杂质相,而未处理前驱体合成的样品则含有少量的杂质相.这种杂质相是在前驱体的制备过程中由于Mn(OH)2被O2氧化而形成难溶Na0.55Mn2O4.1.5H2O化合物,最终转变为Na0.7MnO2.05.  相似文献   

2.
采用溶液燃烧法制备了化学组成均一的尖晶石型(Cr0.2Fe0.2Mn0.2Ni0.2M0.23O4(M=Co,Zn,Mg)高熵氧化物(HEOs)纳米晶粉体,并将3种高熵氧化物用作锂离子电池负极材料,研究了活性过渡金属Co和Zn阳离子与非活性Mg阳离子对电化学性能的影响.结果表明,由于具有高构型熵稳定的晶体结构,3种高熵氧化物均表现出优异的循环稳定性,其中含有非活性Mg离子的高熵氧化物(Cr0.2Fe0.2Mn0.2Ni0.2Mg0.23O4不仅具有更高的初始比容量(1300 mA·h/g)和倍率性能(在3 A/g电流密度下比容量约为450 mA·h/g),且在循环500次后Li+的扩散系数为其它2种高熵氧化物的3倍以上.(Cr0.2Fe0.2Mn0.2Ni0.2Mg0.23O4电化学性能提高的原因是非活性Mg离子不仅避免了锂化过程中活性物质的团聚,还提高了锂离子的扩散系数.  相似文献   

3.
Nanostructured B-site Fe and Mn doped SmCrO3 was prepared by mild hydrothermal growth. The as-prepared crystals are mainly micrometer-scale plates, ranging from rhombus(SmCr0.5Fe0.5O3) to elongated he- xagonal(SmCr0.5Mn0.5O3), and finally to well-edged rectangular(SmCr0.17Mn0.5Fe0.33O3) plates. Fe and Mn doped SmCrO3 crystals are indexed into Pbnm space group. The cell parameters of SmCr0.5Fe0.5O3 are slightly smaller than that of pristine SmCrO3. Binding energy analysis of Cr, Mn and Fe in SmCr0.17Mn0.5Fe0.33O3 sample indicates that they all possess +3 oxidation states. Temperature dependent magnetization of the as-prepared samples presents obviously stronger ferromagnetic interactions than the undoped counterparts. This work represents a remarkable development for hydrothermal synthesis into fabricating perovskite oxide crystals with uniform distribution of doping ions.  相似文献   

4.
尖晶石型镍锰酸锂(LiNi0.5Mn1.5O4)因制备成本低、 放电平台高及循环寿命长等优点, 越来越多地应用于大型储能设备、 能量转换设备、 动力汽车等领域. 然而LiNi0.5Mn1.5O4在高电压(5 V)充电状态下电解液易分解, 从而导致比容量降低以及循环性能衰退. 针对以上问题, 采用水热法制备磷酸钐(SmPO4)表面包覆改性LiNi0.5Mn1.5O4正极材料, 研究了SmPO4包覆量对LiNi0.5Mn1.5O4材料电化学性能的影响. 结果表明, 当SmPO4包覆量为0.5%(质量分数)时, 改性材料(LNMO@SP-0.5)的电化学性能最优, 在0.2C和5C倍率下的放电比容量分别为129.2和90.9 mA?h/g, 而未包覆的材料Pristine LNMO的放电比容量分别仅有114.2和77.7 mA?h/g. 在常温1C倍率下循环200次后, LNMO@SP-0.5的容量保持率为93.4%, 而Pristine LNMO的容量保持率仅为86.6%. 这归因于SmPO4包覆能够有效缓解LiNi0.5Mn1.5O4材料与电解液之间的副反应, 降低电极的极化程度和电荷转移电阻, 增加了Li+的扩散系数.  相似文献   

5.
为解决LiNi0.5Co0.2Mn0.3O2正极材料在高温下循环性能差的问题,本文通过固相法对材料进行锆掺杂改性,研究了不同掺杂量对LiNi0.5Co0.2Mn0.3O2晶体结构和电化学性能的影响。研究表明,当锆掺杂量为1% (x)时,可以降低LiNi0.5Co0.2Mn0.3O2结构中的Li+/Ni2+离子混排,有助于材料电化学性能的提高,尤其是高温循环性能。在25 ℃、3.0-4.3 V下, Li(Ni0.5Co0.2Mn0.3)0.99Zr0.01O2在1C循环95次后容量保持率为92.13%,优于未掺杂样品(87.61%)。在55 ℃下, Li(Ni0.5Co0.2Mn0.3)0.99Zr0.01O2在1C循环115次后容量保持率仍有82.96%,远高于未掺杂样品(67.63%)。因此,少量锆掺杂对提升LiNi0.5Co0.2Mn0.3O2的高温循环性能有积极作用。  相似文献   

6.
Cathodes with high cycling stability and rate capability are required for ambient temperature sodium ion batteries in renewable energy storage application. Na3V2(PO4)3 is an attractive cathode material with excellent electrochemical stability and fast ion diffusion coefficient within the 3D NASICON structure. Nevertheless, the practical application of Na3V2(PO4)3 is seriously hindered by its intrinsically poor electronic conductivity. Herein, solvent evaporation method is presented to obtain the nitrogen-doped carbon coated Na3V2(PO4)3 cathode material, delivering enhanced electrochemical performances. N-Doped carbon layer coating serves as a highly conducting pathway, and creates numerous extrinsic defects and active sites, which can facilitate the storage and diffusion of Na+. Moreover, the N-doped carbon layer can provide a stable framework to accommodate the agglomeration of the electrode upon electrode cycling. N-Doped carbon coated Na3V2(PO4)3(NC-NVP) exhibits excellent long cycling life and superior rate performances than bare Na3V2(PO4)3 without carbon coating. NC-NVP delivers a stable capacity of 95.9 mA·h/g after 500 cycles at 1 C rate, which corresponds to high capacity retention(94.6%) with respect to the initial capacity(101.4 mA·h/g). Over 91.3% of the initial capacity is retained after 500 cycles at 5 C, and the capacity can reach 85 mA·h/g at 30 C rate.  相似文献   

7.
The nano SnO2-modified LiNi1/3Co1/3Mn1/3O2 was successfully prepared by a carrier transfer method. The pristine and modified samples were characterized with various techniques such as XRD, SEM, XPS and EDS. The results showed that the SnO2 particles did not enter the crystal structure of LiNi1/3Co1/ 3Mn1/3O2, many nano SnO2 particles were uniformly covered on the surface of LiNi1/3Co1/3Mn1/3O2 and the modified thin layer could inhibit the dissolution of transition metal oxides. The electrochemical tests indicated that the existence of nano SnO2 could improve the discharge capacity and rate capability owing to the decreased interfacial polarization. The cycling stability was remarkably improved at room temperature and 55 ℃. The XRD patterns of the fresh NCM electrode and after 50 cycles proved that the structural change of NCM was not so effective on the capacity fade.  相似文献   

8.
采用水热法结合热处理制备了具有高结晶性的V2O5,利用X射线衍射仪、球差校正扫描透射电子显微镜和扫描电子显微镜对V2O5的物相和形貌进行了表征,发现制备的V2O5择优取向生长并且具有良好的结晶性.电化学测试结果表明,以V2O5为正极材料的电池在电流密度为0.5 A/g下首次放电比容量约为340 mA·h/g.在电流密度为5 A/g下电池的首次放电比容量为170 mA·h/g,并且循环100次后衰减为50 mA·h/g.对不同放电态的V2O5正极材料的物相进行了分析,得出了V2O5正极材料在充放电过程中发生了锌离子和质子共嵌入(脱出)的反应机理;V2O5正极材料在充放电过程中发生的非晶化和副产物碱式硫酸锌的生成是导致以V2O5作为水系锌离子电池正极材料的电池系统发生容量衰减的主要原因.  相似文献   

9.
采用纳米三氧化二铝(Al2O3)对富锂锰基正极材料Li1.2Ni0.13Co0.13Mn0.54O2进行表面均匀包覆, 并考察了最优纳米Al2O3包覆量下材料的电化学性能. 扫描电子显微镜(SEM)和透射电子显微镜(TEM)显示了纳米Al2O3对富锂锰基正极材料表面均匀包覆, X射线衍射分析(XRD)结果表明包覆后富锂材料依然具有良好的层状结构. 恒流充/放电循环测试发现, 包覆后的Li1.2Ni0.13Co0.13Mn0.54O2材料的首次放电比容量为249.7 mA·h/g, 循环100次后的容量保持率为89.5%, 与未包覆的Li1.2Ni0.13Co0.13Mn0.54O2材料相比, 容量保持率提升约13%. 循环伏安(CV)和电化学阻抗(EIS)测试结果表明, 纳米Al2O3包覆可有效抑制材料极化, 降低界面阻抗和电荷转移阻抗, 进而提升富锂锰基正极材料的电化学性能.  相似文献   

10.
报道了Na2Ti3O7纳米片的原位生长和钠离子电池负极材料的应用。通过简单的腐蚀市售的钛片制备出相互连接的微纳结构的Na2Ti3O7纳米片。此外,腐蚀后的钛片在不用添加导电剂或粘结剂的情况下,可以直接作为电极材料使用。这种电极材料表现出优越的电化学性能,在50 mA·g–1的电流密度下具有175 mAh·g–1的可逆容量,在2000 mA·g–1的电流密度下循环3000周后,其容量仍保持120 mAh·g–1,容量保持率为96.5%。Na2Ti3O7纳米片电极的优越电化学性能归因于二维结构具有较短的离子/电子扩散路径以及无粘结剂结构能有效的增加电极的电子传导能力。结果表明,这种微纳结构能够有效地克服Na2Ti3O7作为电极材料离子/电子导电性差的缺点。因此,这种无粘结剂结构的Na2Ti3O7纳米片负极材料是一种很有潜力的钠离子负极材料。  相似文献   

11.
Sodium-ion batteries(SIBs)are promising for grid-scale energy storage applications due to the natural abundance and low cost of sodium.Among various Na insertion cathode materials,Na0.44MnO2 has attracted the most attention because of its cost effectiveness and structural stability.However,the low initial charge capacity for Na-poor Na0.44MnO2 hinders its practical applications.Herein,we developed a facile chemical presodiated method using sodiated biphenly to transform Na-poor Na0.44MnO2 into Na-rich Na0.66MnO2.After presodiation,the initial charge capacity of Na0.44MnO2 is greatly enhanced from 56.5 mA·h/g to 115.7 mA·h/g at 0.1 C(1 C=121 mA/g)and the excellent cycling stability(the capacity retention of 94.1%over 200 cycles at 2 C)is achieved.This presodiation strategy would open a new avenue for promoting the practical applications of Na-poor cathode materials in sodium-ion batteries.  相似文献   

12.
采用金属硝酸盐为金属源, NaOH和Na2CO3为沉淀剂, 利用共沉淀法制备了La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3高熵氧化物负极材料, 研究了粉体的微观结构和电化学性能, 并与传统的LaCoO3的电化学性能进行了比较. 通过扫描电子显微镜(SEM)、 X射线衍射(XRD)和N2吸附-脱附测试对其进行了表征, 结果表明, 所制备的 La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3高熵氧化物为钙钛矿结构, 形貌为球状, 且各组成元素分布均匀, 比表面积(19.83 m2/g)较高. 储锂性能研究表明, La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3高熵氧化物负极材料具有较高比容量、 优异的倍率性能和循环稳定性, 在200 mA/g的电流密度下, 其首次放电比容量为855.8 mA·h/g, 循环150次后, 比容量增加到771.8 mA·h/g, 远高于理论比容量(331.6 mA·h/g); 在3000 mA/g的高电流密度下循环500次后, 其仍能保持320 mA·h/g的可逆比容量, 接近其理论比容量, 容量保持率高达95.1%. La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3高熵氧化物储锂性能的大幅度提高, 主要归因于熵稳定的晶体结构和多主元协同效应, 使其具有较大的锂离子扩散系数(11.2×10-18 cm2/s)和较高的赝电容贡献.  相似文献   

13.
通过共沉淀法制得类球形锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2,并用非水相共沉法对其进行CoAl2O4包覆得到LNCMO(x). 采用X射线衍射(XRD)、扫描电子显微术(SEM)和透射电子显微术(TEM)测试材料的结构和观察材料形貌. 结果表明,CoAl2O4在材料表面形成8 nm均匀包覆层,未改变主体材料的结构. 电化学性能测试表明,1%(by mass)CoAl2O4包覆量的LiNi1/3Co1/3Mn1/3O2材料(LNCMO(1))高充电电压(3.0 ~ 4.6 V,150 mA·g-1)100周期循环放电容量保持率为93.7%(无包覆LNCMO(0)保持率为74.4%);55 °C高温100周期循环容量保持率为77%(无包覆LNCMO(0)保持率17%). XRD和电感耦合等离子体原子发射光谱(ICP-AES)测试表明,CoAl2O4包覆的LNCMO(x)材料可有效地减缓材料中Mn离子在电解液的溶解,提高材料结构稳定性和热稳定性.  相似文献   

14.
Na_(0.44)MnO_2具有特殊的三维隧道结构和良好的化学稳定性,是一种理想的钠离子电池正极材料。本文研究了Na_(0.44)MnO_2正极材料的高温电化学性能,采用液相法对Na_(0.44)MnO_2正极材料进行Al_2O_3包覆改性,并通过电化学、形貌分析、结构分析、化学成分表征等方法研究Al_2O_3包覆的改性机制。结果表明:Al_2O_3包覆层有效地隔离了Na_(0.44)MnO_2与电解液的直接接触,缓解了高温下锰的溶解,从而维持了稳定的电极/溶液界面结构。Na_(0.44)MnO_2@Al_2O_3在55°C下的电化学性能相比未包覆Na_(0.44)MnO_2有显著提升:循环100次后容量保持率达79.2%,远高于未包覆的66.5%;在10C (1C=120 mAh·g~(-1))的大电流密度下放电比容量达到63.6 mAh·g~(-1),而未包覆的仅有12.3 mAh·g~(-1)。  相似文献   

15.
LiNi0.5Mn1.5O4 prepared by a spray drying method was re-treated in N2 at 500, 600 and 700℃, respectively. Their structural and electrochemical properties were studied by means of Fourier transform infrared(FTIR), X-ray diffraction(XRD), and charge-discharge tests. The space group of the LiNi0.5Mn1.5O4 transforms from P4332 to Fd3 m at an annealing temperature of 700℃. The electrochemical characteristics of the treated samples are closely related to the annealing temperature. The sample treated in N2 at 500℃ shows both an improved rate capability and cyclic performance at a high temperature compared with the as-prepared sample, while the sample treated in N2 at 700℃ shows dramatically decrease in its reversible capacity.  相似文献   

16.
The application of transition metal dichalcogenides(TMDs) as anode materials in sodium-ion batteries (SIBs) has been hindered by low conductivity and poor cyclability. Herein, we report the synthesis of CoxFe1-xS2 bimetallic sulfide/sulfur-doped Ti3C2 MXene nanocomposites(CoxFe1-xS2@S-Ti3C2) by a facile co-precipitation process and thermal-sulfurization reaction. The interconnected 3D frameworks consisting of MXene nanosheets can effectively buffer the volume change and enhance the charge transfer. In particular, sulfur-doped MXene nanosheets provide rich active sites for sodium storage and restrain sulfur loss during charging/discharging processes, leading the increase of specific capacity and cycling the stability of anode materials. As a result, CoxFe1-xS2@S-Ti3C2 anodes exhibited high capacity, high rate capability and long cycle life(399 mA·h/g at 5 A/g with an 94% capacity retention after 600 cycles).  相似文献   

17.
在LiNi1/3Co1/3Mn1/3O2正极材料表面包覆ZnO,通过X射线衍射(XRD)和光电子能谱(XPS)分析包覆层对正极材料表面状态的改变,并考察了改性后材料的放电容量、首次不可逆容量等电化学性能变化. 结果表明:ZnO主要存在于材料表面并影响着材料表面组成和电化学性质,材料表面镍和锰的含量随着包覆量的增加而增大;400 oC热处理可使过渡金属与锌在材料表面形成复合氧化物,过渡金属的结合能增大;包覆2%(by mass,下同)的ZnO可有效抑制55 oC下充放电时3.6 V附近的不可逆反应,提高了材料的首次库仑效率;包覆2% ZnO的电池材料在55 oC/0.5C的放电比容量和循环寿命最佳.  相似文献   

18.
用高分子分散及微波-固相复合加热技术合成了层状锂离子电池正极材料LiNi0.5Co0.5O2. 采用循环伏安、充放电循环、扫描电子显微镜(SEM)以及X射线粉末衍射(XRD)等测试技术, 研究了煅烧条件对材料微观形貌、相结构以及电化学性能的影响规律. 研究结果表明: 在750 ℃煅烧4 h即可得到形状为类球形的纯相层状LiNi0.5Co0.5O2正极材料, 该材料的最大放电容量达到154 mA·h/g, 循环10周后放电容量仍保持在148 mA·h/g以上.  相似文献   

19.
引入电解液添加剂是提升钠离子二次电池电化学性能的重要途径.本论文制备了二氟草酸硼酸钠(NaDFOB)并作为NaClO4/碳酸乙烯酯(EC)/碳酸丙烯酯(PC)( EC:PC体积比=1:1)非水电解液的添加剂,分别考察了其加入量对于电导率特性、电化学氧化分解电压的影响,以及应用于NaNi0.5Mn0.5O2半电池的电化学性能. 结果表明,NaDFOB作为添加剂时对于NaClO4/EC/PC电解液电导率提升不明显,但是显著提升了电解液的氧化分解电压;以添加0.025 mol·L-1 NaDFOB的电解液应用于NaNi0.5Mn0.5O2半电池时,首周不可逆比容量由22 mAh·g-1下降到9 mAh·g-1,同时0.2C倍率下循环200周容量保持率由44.4% 提升到89.5%,平均每周容量衰减为0.06 mAh·g-1. 因此,NaDFOB可以作为钠离子电池非水电解液的一种有效添加剂.  相似文献   

20.
K-Ce0.5Zr0.5O2催化碳颗粒物燃烧性能   总被引:2,自引:0,他引:2  
用等体积浸渍法制备了不同K负载量的xKNO3-Ce0.5Zr0.5O2系列催化剂,用程序升温氧化反应(TPO)考察催化剂对碳颗粒物(soot)燃烧的催化活性. 并采用XRD、BET、FT-IR、XPS等技术对KNO3负载催化剂进行表征. 结果表明KNO3负载量对催化剂的比表面、表面化学环境有显著的影响;KNO3能使催化剂对soot的催化燃烧活性有较大提高,且存在最佳负载量,当x=0.5时,催化剂的活性最好,碳颗粒物的起燃温度(Ti)和峰顶温度(Tp)分别为290 ℃和360 ℃. 在反应过程中,KNO3熔融状态的形成和K2CO3的生成,使催化活性明显提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号