首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A simple, rapid and sensitive HPLC method was developed and validated for the determination of four tricyclic antidepressants (TCAs): amitriptyline, doxepin, clomipramine (CLO) and imipramine, in pharmaceutical formulations and biological fluids. A Kromasil C(8 )analytical column (250 x 4 mm, 5 microm) was used for the separation, with a mobile phase consisting of 0.05 M CH(3)COONH(4) and CH(3)CN (45:55 v/v) delivered at 1.5 mL/min isocratically. Quantification was performed at 238 nm, with bromazepam (1.5 ng/microL) as the internal standard. The determination of TCAs in blood plasma was performed after protein precipitation. Urine analysis was performed by means of SPE using Lichrolut RP-18 Merck cartridges providing high absolute recoveries (> 94%). Direct analysis of urine was also performed after two-fold dilution. The developed method was fully validated in terms of selectivity, linearity, accuracy, precision, stability and sensitivity. Repeatability (n = 5) and between-day precision (n = 5) revealed RSD <13%. Recoveries from biological samples ranged from 91.0 to 114.0%. The absolute detection limit of the method was calculated as 0.1-0.6 ng in blood plasma and 0.2-0.5 ng in extracted urine or 0.4-0.7 in diluted urine. The method was applied to real samples of plasma from a patient under CLO treatment.  相似文献   

2.
Blood orange juice has a high content in anthocyanins, especially represented by delphinidin-3-glucoside (D3G), cyanidin-3-glucoside (C3G) and cyanidin-3-(6-malonylglucoside) (CMG). An LC-MS/MS method for the simultaneous determination of D3G and C3G in human plasma and urine was developed and validated. After sample preparation by SPE, chromatographic separation was performed with an RP-C(18) column, using a water/methanol linear gradient. The quantitation of target compounds was determined by multiple reaction monitoring (MRM) mode, using ESI. The method showed good selectivity, sensitivity (LOD = 0.05 and 0.10 ng/mL for C3G in plasma and urine, respectively; LOD = 0.10 ng/mL for D3G in plasma and urine), linearity (0.20-200 ng/mL; r >or= 0.998), intra- and interday precision and accuracy (相似文献   

3.
Lu CC  Jong YJ  Ferrance J  Ko WK  Wu SM 《Electrophoresis》2007,28(18):3290-3295
A short-end injection CE method combining field-amplified sample stacking (FASS) is presented for the analysis of fluoxetine (FL) and norfluoxetine in plasma. In this study, FASS enhanced the sensitivity about 1100-fold, while short-end injection reduced the analysis time to less than 4 min. Parameters involved in the separations were investigated using a central composite design (CCD) and response surface methodology to optimize the separation conditions in a total of only 32 runs. Samples injected into the capillary for 99.9 s at a voltage of -5 kV were stacked in a water plug (0.5 psi, 9 s). Baseline resolution of FL and its major metabolite was achieved using a BGE formulation consisting of phosphate-triethanolamine at low pH, and a separation voltage of -10 kV. Five percent methanol was added as organic modifier to enhance selectivity and resolution. The linear range was between 10 and 500 ng/mL (r >0.9946), covering the expected plasma therapeutic ranges. The LOD in plasma were 4 ng/mL (S/N = 3), a value comparable to that obtained using LC-MS, showing the success of the on-line stacking technique. Our method was also successfully validated in quantification and pharmacokinetic studies with three volunteer plasma samples and could be applied to pharmacogenetic studies.  相似文献   

4.
A simple, rapid and sensitive liquid chromatography/electrospray tandem mass spectrometry (LC-MS/MS) quantitative detection method, using cefalexin as internal standard, was developed for the analysis of faropenem in human plasma and urine. After precipitation of the plasma proteins with acetonitrile, the analytes were separated on a C18 reversed-phase column with 0.1% formic acid-methanol (45:55, v/v) and detected by electrospray ionization mass spectrometry in positive multiple reaction monitoring mode. Calibration curves with good linearities (r=0.9991 for plasma sample and r=0.9993 for urine sample) were obtained in the range 5-4000 ng/mL for faropenem. The limit of detection was 5 ng/mL. Recoveries were around 90% for the extraction from human plasma, and good precision and accuracy were achieved. This method is feasible for the evaluation of pharmacokinetic profiles of faropenem in humans, and to our knowledge, it is the first time the pharmacokinetic of faropenem has been elucidated in vivo using LC-MS/MS.  相似文献   

5.
A rapid, sensitive and automated in-tube solid-phase microextraction-liquid chromatography-mass spectrometry (in-tube SPME/LC-MS) method was developed for the analysis of ten antidepressants in urine and plasma. A hybrid organic-inorganic silica monolith with cyanoethyl functional groups was prepared and used as a sorbent for in-tube SPME. Integration of the sample extraction, LC separation and MS detection into a single system permitted direct injection of the diluted urine or plasma after filtration. Under the optimized conditions, good extraction efficiencies for the targets were obtained with no matrix interference in the subsequent LC-MS. Automation of the sampling, extraction and separation procedures was realized under the control of a program in this study. The total process time was 30 min and only 30 μL of urine or plasma was required in one analysis cycle. Good linearities were obtained for ten antidepressants with the correlation coefficients (R) above 0.9933. The limits of detection (S/N=3) for ten antidepressants were found to be 0.06-2.84 ng/mL in urine and 0.07-2.95 ng/mL in plasma. The recoveries of antidepressants spiked in urine and plasma were from 75.2% to 113.0%, with relative standard deviations less than 16.5%. The developed method was successfully used to analyze urine sample from ageing patients undergoing therapy with antidepressants.  相似文献   

6.
A new method for the qualitative and quantitative analysis of gamma-hydroxybutyric acid (GHB) in plasma and urine samples is described. It involves the conversion of GHB to gamma-butyrolactone (GBL), its subsequent headspace solid-phase microextraction (SPME), and detection by gas chromatography/positive ion chemical ionization mass spectrometry (GC/PICI-MS), using D(6)-GBL as internal standard. The assay is linear over a plasma GHB range of 1-100 microg/mL (n = 5, r = 0.999) and a urine GHB range of 5-150 microg/mL (n = 5, r = 0. 998). Relative intra- and inter-assay standard deviations, determined for plasma and urine samples at 5 and 50 microg/mL, are all below 5%. The method is simple, specific and reasonably fast. It may be applied for clinical and forensic toxicology as well as for purposes of therapeutic drug monitoring.  相似文献   

7.
Mesocarb metabolism in humans is the target of this investigation. A high-performance liquid chromatographic (LC) method with electrospray ionization (ESI)-ion trap mass spectrometric (MS) detection ion trap "SL" for the simultaneous determination of mesocarb and its metabolites in plasma and urine is developed and validated. Ten metabolites and the parent drug are detected in human urine, and only four in human plasma, after the administration of a single oral dose of 10 mg of mesocarb (Sydnocarb, two 5-mg tablets). Seven of this metabolites have been found for the first time. The confirmation of the results and identification of all the metabolites except amphetamine is performed by LC-MS, LC-MS-MS, and LC-MS3. In the case of doping analysis, the reliable detection time for mesocarb (long-life dihydroxymesocarb metabolites of mesocarb) is approximately 10-11 days after the administration of the drug, which is a significant increase over the existing data. The detection of amphetamine in plasma and urine is made using simple flow-injection analysis without a chromatographic separation. The addition-calibration method is used with plasma and urine. The mean recoveries from plasma are 49.2% and 57.4% for mesocarb concentrations of 33.0 and 66.0 ng/mL, respectively, whereas the recoveries from human urine are 76.9% and 81.4% for concentrations of 1 and 2 ng/mL, respectively. Calibration curves (using an internal standard method) are linear (r2>0.9969) for concentrations 0.6 to 67 ng/mL and from 0.05 to 5 ng/mL in plasma and urine, respectively. Both intra- and interassay precision of plasma control samples at 3, 40, and 55 ng/mL are lower than 6.2%, and the concentrations do not deviate for more than -3.4% to 7.3% from their nominal values. In urine, intra- and interassay precision of control samples at 0.08, 1.5, and 3.0 ng/mL is lower than 14.1%, with concentrations not deviating for more than -11.3% to 13.7% from their nominal values. The plasma disappearance curve of the parent drug is obtained. The major pharmacokinetic parameters are calculated.  相似文献   

8.
A validated new and precise reversed-phase high-performance liquid chromatographic method for the determination of melatonin in human plasma and cerebrospinal fluid, with 5-fluorotryptamine as internal standard, is described. Liquid-liquid extraction with dichloromethane was performed under alkaline conditions. After evaporation of the organic solvent, the extract was dissolved in eluent and chromatographed on a base-deactivated octadecyl column, using an eluent composed of 650 mL potassium dihydrogenphosphate solution (0.07 mol/L water), adjusted to a pH of 3.0 with a 43% phosphoric acid solution, mixed with 350 mL methanol. Fluorescence detection at an excitation wavelength of 224 nm and an emission wavelength of 348 nm was used for quantitation. Melatonin and 5-fluorotryptamine chromatographed with retention times of 5.3 and 9. 3 min, respectively. Mean recoveries of 96% (n = 10) and 95% (n = 5) were found for melatonin in plasma and cerebrospinal fluid respectively. 5-Fluorotryptamine was found to have a mean recovery of 90% (n = 10) and 82% (n = 5) in plasma and cerebrospinal fluid, respectively. The repeatability coefficients of variation for both melatonin and 5-fluorotryptamine in plasma were 4-5% [five different samples (r = 5) on two consecutive days (n = 2)], with reproducibility coefficients of 1.6-7% (n = 2, r = 5) and 0.9-4% (n = 2, r = 5) for melatonin and internal standard, respectively. In cerebrospinal fluid the repeatability coefficient of variation of the extraction procedure was 5% (n = 1, r = 5) for melatonin and 7% (n = 1, r = 5) for 5-fluorotryptamine. The correlation coefficients of the calibration curves were 0.9998 (n = 2) in plasma at a concentration range of 0.108-25.9 ng/mL and 0.9994 (n = 2) at a concentration range of 0.108-25.9 ng/mL in cerebrospinal fluid. The limit of detection was determined at 8 pg/mL which enables to measure melatonin concentrations at physiological concentrations reached during daytime.  相似文献   

9.
A simple, specific and sensitive HPLC method has been developed for the determination of metoprolol in human plasma and urine. Separation of metoprolol and atenolol (internal standard) was achieved on an Ace C18 column (5 μm, 250 mm×4.6 mm id) using fluorescence detection with λex=276 nm and λem=296 nm. The mobile phase consists of methanol–water (50:50, v/v) containing 0.1% TFA. The analysis was performed in less than 10 min with a flow rate of 1 mL/min. The assay was linear over the concentration range of 3 – 200 and 5 – 300 ng/mL for plasma and urine, respectively. The LOD were 1.0 and 1.5 ng/mL for plasma and urine, respectively. The LOQ were 3.0 and 5.0 ng/mL for plasma and urine, respectively. The extraction recoveries were found to be 95.6 ± 1.53 and 96.4 ± 1.75% for plasma and urine, respectively. Also, the method was successfully applied to three patients with hypertension who had been given an oral tablet of 100 mg metoprolol.  相似文献   

10.
An enantioselective method for baclofen (4-amino-3-p-chlorophenylbutyric acid) based on capillary electrophoresis (CE) separation and laser-induced fluorescence (LIF) detection has been developed. Naphthalene-2,3-dicarboxaldehyde (NDA) was used for precolumn derivatization of the nonfluorescent drug. alpha-Cyclodextrin (alpha-CD) was included in the buffer as a chiral selector for the separation of NDA-labeled S-(+)- and R-(-)-baclofen. Optimal resolution and detection were obtained with an electrophoretic buffer of 50 mM sodium borate (pH 9.5) containing 7 mM alpha-CD and a He-Cd laser (lambda ex = 442 nm, lambda em = 500 nm). Combined with a simple cleanup procedure, this method can be applied to the analysis of baclofen enantiomers in human plasma. The relative standard deviation (RSD) values on peak areas of a plasma sample containing 1.0 microM racemic baclofen were 6.4 and 4.9% (n = 8) for the S-(+)- and R-(-)-enantiomer, respectively. The RSD value on migration times of both enantiomers was 0.5% (n = 8). Calibration graphs for S-(+)- and R-(-)-baclofen in plasma showed a good linearity (r > or = 0.999) in the concentration range of 0.1-2.0 microM. The limit of detection of baclofen in plasma was about 10 ng/mL.  相似文献   

11.
A sensitive, selective, and simple gas chromatography-mass spectrometry method is developed for quantitation of phenazopyridine (PAP) in human plasma using internal standard (diazepam). PAP and IS are extracted from plasma by liquid-liquid extraction and analyzed on a DB-5MS column with mass selective detector. Excellent linearity is found between 5-500 ng/mL (r = 0.9992, n = 7) for PAP in human plasma. The limit of detection is 0.3 ng/mL. Intra- and Inter-day precisions expressed as the relative standard deviation for the method are 1.37-6.69% and 1.24-6.01%, respectively. Extraction efficiency is more than 90%, and recoveries are in the range of 92.65-96.21%. This method is successfully applied for the pharmacokinetics and bioequivalence of 2 formulations of PAP in 18 healthy male volunteers who received a single 200 mg dose of each formulation.  相似文献   

12.
Lin YH  Chiang JF  Lee MR  Lee RJ  Ko WK  Wu SM 《Electrophoresis》2008,29(11):2340-2347
A cation-selective exhaustive injection and sweeping micellar EKC (CSEI-Sweep-MEKC) was established to analyze morphine and its four metabolites, including codeine, normorphine (NM), morphine-3-glucuronide (M3G), and morphine-6-glucuronide (M6G). After SPE, the urine samples were analyzed by this CE method. The phosphate buffer (75 mM, pH 2.5) containing 30% methanol was first filled into an uncoated fused-silica capillary (40 cm, 50 microm id), then a high-conductivity buffer (120 mM phosphate, 10.3 kPa for 99.9 s) followed. The pretreated urine sample was loaded by electrokinetic injection (10 kV, 600 s). The stacking and separation were performed by using phosphate buffer (25 mM, pH 2.5) containing 22% methanol and 100 mM SDS at -20 kV, and detected at 200 nm. During method validation, calibration plots were linear (r > or = 0.998) over a range of 30-3000 ng/mL for morphine, NM, and codeine, 100-2000 ng/mL for M6G, and 80-3200 ng/mL for M3G. The LODs (S/N = 5, sampling 600 s at 10 kV) were 10 ng/mL for morphine, NM, and codeine, 35 ng/mL for M6G, and 25 ng/mL for M3G. This stacking CE method could increase 2500-fold sensitivity of codeine, when comparing with CZE. Five addicts' urine specimens were analyzed. Their results were compared with those of LC-MS-MS, and showed good coincidence. This method could be feasible for monitoring morphine and its metabolites in forensic interest and pharmacokinetic investigations.  相似文献   

13.
报道了血、尿中氯硝西泮及其代谢物7-氨基氯硝西泮的GC-ECD检测方法。苯-异戊醇碱性条件下(pH10.8)液-液萃取,灵敏度较高,氯硝西泮和7-氨基氯硝西泮的检测限(LOD)分别为3.2ng/mL及1.7ng/mL。线性范围5-300ng/mL,RSD5.3%。  相似文献   

14.
张秀尧  蔡欣欣  张晓艺 《色谱》2014,32(6):586-590
建立了超高效液相色谱-三重四极杆质谱联用方法,检测血浆和尿液中的α-龙葵碱、α-卡茄碱和茄啶。样品经2%(v/v,下同)甲酸水溶液等量稀释,再经混合型阳离子交换固相萃取柱(MCX SPE)净化,以0.1%甲酸乙腈溶液和含0.05%甲酸的5 mmol/L乙酸铵水溶液作为流动相进行梯度洗脱,在UPLC BEH C18色谱柱上实现分离,正离子电喷雾串联质谱多反应监测(ESI-MS/MS MRM)方式检测,基质匹配外标法定量。一次进样分析时间为5.5min。血浆和尿液中3种待测物的线性范围均为0.3~100 ng/mL,相关系数为0.997~0.999;样品的检出限为0.1 ng/mL,定量限为0.3 ng/mL;血浆和尿液中的平均加标回收率分别为82%~112%和96%~114%,相对标准偏差为4.0%~16%和2.7%~17%(n=6)。方法简单、准确、灵敏,适用于马铃薯中毒检测。  相似文献   

15.
林强  杨超  李美丽  王佳  侯瀚然  邵兵  牛宇敏 《色谱》2023,41(3):274-280
人体生物基质中麻痹性贝类毒素的检测对其引起的食物中毒诊断和救治具有重要意义。研究建立了超高效液相色谱-串联质谱法测定血浆、尿液中14种麻痹性贝类毒素的分析方法。实验比较了不同固相萃取柱的影响,优化了前处理条件和色谱条件,血浆样品采用0.2 mL水、0.4 mL甲醇、0.6 mL乙腈提取后直接上机测定,尿液样品采用0.2 mL水、0.4 mL甲醇、0.6 mL乙腈提取,聚酰胺(PA)固相萃取柱净化后上机测定。采用Poroshell 120 HILIC-Z色谱柱(100 mm×2.1 mm,2.7μm)对14种贝类毒素进行分离,流动相为含0.1%(v/v)甲酸的5 mmoL/L甲酸铵缓冲溶液和0.1%(v/v)甲酸乙腈溶液,流速为0.50 mL/min。在电喷雾模式(ESI)下进行正负离子扫描,采用多反应监测(MRM)模式检测,外标法定量。结果表明,对于血浆和尿液样品,14种贝类毒素分别在0.24~84.06 ng/mL范围内线性关系良好,相关系数均大于0.995。尿液检测的定量限为4.80~34.40 ng/mL,血浆检测的定量限为1.68~12.04 ng/mL。尿液和血浆样品在1、2和10倍定量限加标水平下平均回收率为70.4%~123.4%,日内精密度为2.3%~19.1%,日间精密度为4.0%~16.2%。应用建立的方法对腹腔注射14种贝类毒素小鼠血浆和尿液进行测定,20份血浆样本中检出含量分别为19.40~55.60μg/L和8.75~13.86μg/L。该方法操作简便,样品取样量少,方法灵敏度高,适用于血浆和尿液中麻痹性贝类毒素的快速检测。  相似文献   

16.
A capillary electrophoresis (CE) coupled with electrochemiluminescence (ECL) detection method for the analysis of ethambutol (EB) and methoxyphenamine (MP) has been investigated. Complete separation of EB and MP was achieved in 8 min using a background electrolyte of 20 mM sodium phosphate at pH 10.0 and a separation voltage of 9 kV. ECL detection was performed with an indium/tin oxide (ITO) working electrode biased at 1.4 V (versus a Pt wire reference) in a 200 mM sodium phosphate buffer (pH 8.0) containing 3.5 mM Ru(bpy)3(2+) (where bpy = 2,2'-bipyridyl). Linear correlation (r > or = 0.993) between ECL intensity and drug concentration was obtained in the range 2-50 ng/ml. The limits of detection (LODs) for EB and MP in water were 1.0 and 0.9 ng/ml, respectively. The relative standard deviation values on peak size (10 ng/ml level) and migration time for the two drugs were in the ranges 5-8 and 0.2-0.7% (n = 7), respectively. Applicability of the CE-ECL method to the analysis of human plasma spiked with EB and MP was examined. The LODs for EB and MP in plasma were 0.4 and 0.3 microg/ml, respectively.  相似文献   

17.
A new simple, rapid and sensitive reversed-phase liquid chromatographic method was developed and validated for the simultaneous determination of sulpiride (SUL) and mebeverine Hydrochloride (MEB) in the presence of their impurities and degradation products. The separation of these compounds was achieved within 6 min on a 250 mm, 4.6 mm i.d., 5 m particle size Waters?-C18 column using isocractic mobile phase containing a mixture of acetonitrile and 0.01 M dihydrogenphosphate buffer (45:55) at pH = 4.0. The analysis was performed at a flow rate of 1.0 mL/min with fluorescence-detection at excitation 300 nm and emission at 365 nm. The concentration-response relationship was linear over a concentration range of 10- 100 ng/mL for both MEB and SUL with a limit of detection 0.73 ng/mL and 0.85 ng/mL for MEB and SUL respectively. The proposed method was successfully applied for the analysis of both MEB and SUL in bulk with average recoveries of 100.22 ± 0.757% and 99.96 ± 0.625% respectively, and in commercial tablets with average recoveries of 100.04 ± 0.93% and 100.03 ± 0.376% for MEB and SUL respectively. The proposed method was successfully applied to the determination of MEB metabolite (veratic acid) in real plasma simultaneously with SUL. The mean% recoveries (n = 3) for both MEB metabolite (veratic acid) and SUL were 100.36 ± 2.92 and 99.06 ± 2.11 for spiked human plasma respectively. For real human plasma, the mean% recoveries (n = 3) were and respectively.  相似文献   

18.
A high-performance liquid chromatography (HPLC) assay is described for the determination of indomethacin in porcine plasma using acetonitrile to precipitate plasma proteins and for the one-step extraction. Calibration curves (using the internal standard method) are linear (r2 > 0.98) over the concentration range of 50.0 to 3000 ng/mL in both mobile phase and plasma. Precision, expressed as the inter- and intraday coefficient of variation (n = 5), is < 7% on the same day and < 5% between days at each plasma control sample of 300, 1000, and 3000 ng/mL, respectively. System precision, calculated as the coefficient of variation (n = 5), is < 7% at 3000 ng/mL of indomethacin, and the limit of quantitation in plasma is 50 ng/mL. The absolute recovery for both indomethacin and the internal standard (mefenamic acid) from plasma is over 97% (n = 3), and the concentrations do not deviate more than -2.9% to 2.4% from their actual values. The specificity of the method is confirmed. This technique is thus reported to be both rapid and specific. The real advantage is the small sample volume required (500 microL), which allows it to be considered for the quantitation of indomethacin in plasma from paediatric patients.  相似文献   

19.
A sensitive high-performance liquid chromatographic technique is described for the separation of R- and S-acebutolol in human plasma and urine. The procedure involves derivatization with the chiral reagent S-(+)-1-(1-naphthyl)ethyl isocyanate. The resulting diastereoisomers are quantified using normal-phase high-performance liquid chromatography with fluorescence detection (220/389 nm). Virtual baseline separation, free from interference, with achieved (resolution factor = 1.45). Excellent linearity (r greater than 0.998) was observed throughout the range 10-500 ng/l and 2-100 mg/l in plasma and urine, respectively. Inter-assay variability was less than 5% for each enantiomer at concentrations of 10 ng/ml. This method is applicable for the determination of the pharmacokinetics, in man, of acebutolol enantiomers in plasma and urine.  相似文献   

20.
A semi-micro column high-performance liquid chromatography with ultraviolet detection for the determination of triazolam is described. The method was applied to determine plasma and brain microdialysate concentrations of triazolam after single intravenous bolus of 2.5 mg/kg to rat. The separation was achieved on a 250 x 1.5 mm i.d. C(18) column and the column effluent was monitored at 222 nm. The detection limits at a signal-to-noise ratio of 3 obtained using spiked plasma and artificial cerebrospinal fluid were 2.1 and 0.7 ng/mL, respectively. The intra- and inter-day reproducibility of the present method were satisfactory with the highest relative standard deviation of 9.1 (n > or = 5). The present method was successfully applied to study the disposition of triazolam in rat (n = 5) by analyzing plasma and brain microdialysate samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号