首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
刘杰  周维友  吴中  孙富安  何明阳  陈群 《应用化学》2015,32(9):1033-1039
采用共沉淀法制备了不同Co2AlMgx(x=0.5、1、1.5和2)原子比的类水滑石,用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、傅里叶变换红外光谱(FT-IR)、表面孔吸附(BET)及电感耦合等离子光谱(ICP)等技术手段表征了催化剂的结构、组成和比表面积,并考察了其催化苯甲醇选择氧化制苯甲醛的性能。 结果表明,随着Mg含量的增加,催化剂的碱性增强,苯甲醛的选择性提高。 在优化条件:苯甲醇0.02 mol,催化剂Co2AlMg1类水滑石100 mg,过氧化氢叔丁醇0.04 mol,溶剂乙腈8 mL,反应温度60 ℃,反应时间9 h下,苯甲醇的转化率为39.5%,苯甲醛的选择性达到89.2%。 催化剂重复使用5次后其活性与选择性未见明显降低,表明催化剂具有较好的稳定性。  相似文献   

2.
以SBA-15为载体,采用浸渍法制备了不同Ag含量的Ag/SBA-15,通过N2吸附-脱附、X射线衍射、扫描电子显微镜、高分辨透射电子显微镜、X射线光电子能谱和电感耦合等离子体质谱对催化剂进行了表征.将Ag/SBA-15用于苯甲醇气相选择性催化氧化合成苯甲醛,研究了反应条件对转化率和选择性的影响.结果表明,Ag/SBA-15具有均一的一维孔道结构、较厚的孔壁(3–5 nm)及较大的比表面积(411–541 m2/g),其规整纳米空间的限域作用使一定负载量的Ag以纳米尺寸均匀分散于介孔SBA-15孔道内,增加了活性组分的比表面积.亲核性氧物种从Ag到SBA-15表面的氧溢流,提高了低温下Ag/SBA-15对苯甲醇气相选择性氧化合成苯甲醛的催化性能.5.3%Ag/SBA-15中的Ag粒径为5–6 nm,且均匀分散于载体孔道中,反应温度为220°C时,苯甲醇转化率为87%,苯甲醛选择性为95%;240°C时,苯甲醇转化率和苯甲醛选择性分别高达94%和97%;并在240–300°C范围内,其催化活性和选择性保持不变,表现出了良好的温度耐受能力.催化剂经活化再生可以连续使用40 h,选择性基本保持不变.  相似文献   

3.
以SBA-15为载体,采用浸渍法制备了不同Ag含量的Ag/SBA-15,通过N2吸附-脱附、X射线衍射、扫描电子显微镜、高分辨透射电子显微镜、X射线光电子能谱和电感耦合等离子体质谱对催化剂进行了表征。将Ag/SBA-15用于苯甲醇气相选择性催化氧化合成苯甲醛,研究了反应条件对转化率和选择性的影响。结果表明,Ag/SBA-15具有均一的一维孔道结构、较厚的孔壁(3-5 nm)及较大的比表面积(411-541 m2/g),其规整纳米空间的限域作用使一定负载量的Ag以纳米尺寸均匀分散于介孔SBA-15孔道内,增加了活性组分的比表面积。亲核性氧物种从Ag到SBA-15表面的氧溢流,提高了低温下Ag/SBA-15对苯甲醇气相选择性氧化合成苯甲醛的催化性能。5.3% Ag/SBA-15中的Ag粒径为5-6 nm,且均匀分散于载体孔道中,反应温度为220℃时,苯甲醇转化率为87%,苯甲醛选择性为95%;240℃时,苯甲醇转化率和苯甲醛选择性分别高达94%和97%;并在240-300℃范围内,其催化活性和选择性保持不变,表现出了良好的温度耐受能力。催化剂经活化再生可以连续使用40 h,选择性基本保持不变。  相似文献   

4.
钛钨改性HMS的合成及催化氧化苯甲醇合成苯甲醛   总被引:4,自引:0,他引:4  
宋贺  贾丽华  郭祥峰 《应用化学》2009,26(2):168-172
通过改变硅钛摩尔比和硅钨摩尔比合成了Ti-HMS和Ti/W-HMS型分子筛,并进行了NH3-TPD测试分析. 结果表明,当n(Si)∶ n(Ti)=30∶ 1、n(Si)∶ n(W)=400∶ 1时,分子筛的酸量最大. 利用上述不同HMS为催化剂,ω(H2O2)=30%的H2O2水溶液为氧化剂,在无有机溶剂及相转移催化剂条件下,氧化苯甲醇制备苯甲醛. 结果表明,Ti/W-HMS可选择性氧化苯甲醇制备苯甲醛;催化剂的酸量和酸强度越大,越有利于提高催化活性和选择性. 利用Ti(30)/W(400)-HMS为催化剂,当n(醇)∶ n(H2O2)=1∶ 2、ω(催化剂)=4%、反应时间为5 h时,苯甲醇的转化率和苯甲醛的选择性分别为72.6%、96.9%. 催化剂重复使用4次后,苯甲醇的转化率和苯甲醛的选择性分别为63.2%、89.1%.  相似文献   

5.
采用溶胶-凝胶法,室温条件下合成了不同Cu含量的Fe/Cu-HMS介孔分子筛催化剂,通过X-射线衍射(XRD)、N2吸附-脱附和扫描电镜(SEM)对合成的催化剂进行了表征;在无助剂条件下,以苯甲醇氧化为反应探针,考察了催化剂Fe/Cu-HMS的催化活性。研究表明:铁、铜部分进入分子筛骨架,没有改变分子筛的介孔结构,具有良好的分散性;在80℃反应温度下,苯甲醇与过氧化氢摩尔比为1∶2,Fe/Cu(50)-HMS为催化剂,反应时间4 h,苯甲醇转化率可达69.9%,苯甲醛选择性达到90.0%,催化剂在重复使用3次后活性基本不变。  相似文献   

6.
以氮掺杂碳纳米管(NCNTs)为载体,采用乙二醇微波还原方法方便制得制备了负载型Ru催化剂,Ru纳米颗粒均匀分散在NCNTs表面,平均粒径为1.6 nm。在温和条件下(常压和空气条件),Ru/NCNTs催化剂表现出良好的苯甲醇催化氧化性能,在90℃下苯甲醇转化率可达93%,苯甲醛选择性大于99%,并且具有良好的可重复使用性能,这些结果显著优于碳纳米管(CNTs)和活性炭(AC)为载体的对比组催化剂。在温和条件下Ru/NCNTs催化剂表现出的优异苯甲醇催化氧化性能可归因于氮掺杂提高了NCNTs的电子密度进而促进了O2分子吸附和反应。  相似文献   

7.
以热氧化剥离法得到的超薄石墨相氮化碳(g-C3N4)纳米片为载体,首次在室温条件下,制备了系列Ag3PO4量子点/g-C3N4纳米片复合光催化剂;通过透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)、X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、紫外-可见漫反射光谱(UV-Vis DRS)、荧光光谱(PL),对复合光催化剂的形貌、结构和光学性质进行了表征,考察了系列光催化剂对苯甲醇的光催化选择性氧化性能。 结果表明,粒径为3~5 nm Ag3PO4颗粒均匀分散g-C3N4纳米片上,结晶度良好。 以乙腈为溶剂时,当m(Ag3PO4)/m(g-C3N4)=0.6时,苯甲醇具有32.1%的最大转化率,对产物苯甲醛具有90%的最高选择性;活性物种捕捉实验结果表明,该催化氧化反应的主要活性物是光生空穴的氧化作用,能带计算结果表明,该复合催化剂结构具有合适的苯甲醇的氧化电位而选择性生成苯甲醛。  相似文献   

8.
通过溶剂热法成功制备了一种基于金属有机骨架(MOF)的复合材料Cu-Cu2O/UiO-66-NH2,采用傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)对材料进行全面表征。在空气作氧化剂条件下,以苯甲醇氧化为苯甲醛作为模型反应,系统地考察了溶剂、温度、催化剂各组分用量等因素对催化效果的影响。研究结果表明,该复合催化剂在醇选择性氧化反应中表现出优异的催化性能,60℃下反应5 h便可将苯甲醇定量转化为苯甲醛,并对其他苄基醇、烯丙基醇和杂芳基醇等底物也展现出良好活性。此外,循环利用3次后,该催化剂活性几乎不变,表明其具有良好的稳定性和重复使用性。  相似文献   

9.
以溶胶固定法制备了Au-Pd/SiO2催化剂,考察了催化剂焙烧温度对甲醇选择氧化制甲酸甲酯反应性能的影响。在200~500℃,400℃焙烧的Au-Pd/SiO2具有最好的低温催化性能,在室温下就有活性,反应温度为100℃时甲醇转化率为25.3%,甲酸甲酯的选择性为100%。采用BET、XRD、UV-vis DRS、XPS、TEM和DRIFTS技术对催化剂进行表征,结果表明,催化剂中活性组分Au和Pd的高分散性,合适的Au和Pd粒径,Au-Pd合金的形成以及Au和Pd之间的强相互作用力,有利于甲醇氧化为甲酸甲酯反应的进行。初步推测出了甲醇在Au-Pd/SiO2上氧化为甲酸甲酯的反应机理,甲醇在Au-Pd/SiO2催化剂上是通过甲氧基中间体得到甲酸甲酯的。  相似文献   

10.
通过溶剂热法成功制备了一种基于金属有机骨架(MOF)的复合材料Cu-Cu2O/UiO-66-NH2,采用傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)对材料进行全面表征。在空气作氧化剂条件下,以苯甲醇氧化为苯甲醛作为模型反应,系统地考察了溶剂、温度、催化剂各组分用量等因素对催化效果的影响。研究结果表明,该复合催化剂在醇选择性氧化反应中表现出优异的催化性能,60℃下反应5 h便可将苯甲醇定量转化为苯甲醛,并对其他苄基醇、烯丙基醇和杂芳基醇等底物也展现出良好活性。此外,循环利用3次后,该催化剂活性几乎不变,表明其具有良好的稳定性和重复使用性。  相似文献   

11.
采用共沉淀法制备了不同CuO和WO3含量的CuO-WO3-ZrO2催化剂. 利用X射线衍射(XRD)、 扫描电子显微镜(SEM)、 X射线荧光光谱(XRF)、 N2气物理吸附、 氢气程序升温还原(H2-TPR)、 X射线光电子能谱(XPS)及程序升温脱附(TPD)等手段对催化剂的结构和表面性质进行了表征. 结果表明, WO3的引入可以调变ZrO2的晶型, 从而使催化剂的比表面积和孔径发生变化, 促进CuO在催化剂表面的分散, 并影响催化剂的酸碱性. 在苯甲醛加氢制备苯甲醇反应中, 以CuO质量分数为18%, WO3质量分数为10%的CuO-WO3-ZrO2为催化剂时苯甲醛单程转化率达到92.03%, 产物苯甲醇的选择性为94.76%.  相似文献   

12.
刘成  谭蓉  银董红  喻宁亚  周裕旭 《催化学报》2010,31(11):1369-1373
 研究了 PMO-SBA-15 材料负载的金属钯纳米粒子 (Pd/PMO-SBA-15) 在水相中催化苯甲醇选择氧化制苯甲醛的反应. 考察了纳米粒子种类、氧化剂用量、反应时间和反应温度等对苯甲醇转化率及苯甲醛选择性的影响. 结果表明, 以水为溶剂, 以 H2O2 (30%) 为氧化剂时, 可得到较高的苯甲醇转化率和苯甲醛选择性. 当以 0.05 g 的 2%Pd/PMO-SBA-15 为催化剂, H2O2 用量为 1.5 ml, 反应温度为 80 oC, 反应 4 h 时, 苯甲醇转化率和苯甲醛选择性分别达到 97.1% 和 100.0%. 对该催化体系的重复使用性能进行了考察. 结果发现, 随着使用次数的增加, 苯甲醇转化率有所下降, 但苯甲醛选择性保持不变.  相似文献   

13.
构建催化剂特别是在亚纳米尺度下分散的贵金属催化剂的构效关系是多相催化研究领域中的主要任务之一.我们采用与金属Pt具有强相互作用的Mg Al_2O_4尖晶石作为载体,通过简单浸渍法制备了在纳米、亚纳米和单原子尺度上分散的Pt催化剂.首先利用X射线衍射和原子分辨的球差校正电镜,确定了Pt在Mg Al_2O_4尖晶石载体表面上随负载量增大逐渐形成孤立的和相邻的单原子Pt,然后逐渐形成无定形Pt聚集体和小晶粒;然后利用电感耦合等离子体光谱和CO化学吸附测定了催化剂中Pt的含量和分散度;进一步通过测定CO在Pt表面吸附的红外光谱,区分了载体表面单原子和金属颗粒表面原子的CO吸附特征结构,并据此对不同结构的Pt原子进行了半定量估算.考察了具有不同Pt分散结构的Pt/Mg Al_2O_4催化剂的催化苯甲醛选择性加氢能力,发现以载体表面Pt单原子物种为主的催化剂,可在较宽的温度区间内保持较高的部分加氢产物苯甲醇的选择性(60–150oC,苯甲醇选择性99.4–97.9%,甲苯选择性~0.4%),而以Pt纳米颗粒为主的催化剂上苯甲醇选择性降低显著,同时生成较多深度加氢产物甲苯(60-150oC,苯甲醇选择性99.0–93.1%,甲苯选择性0.7–5.0%).此外,我们测定了各催化剂在不同转化率(~20–90%)时催化剂加氢反应的质量比活性和转化频率(TOF),并在较低苯甲醛转化率(~20%)时,估算了不同结构Pt物种对苯甲醛加氢反应的本征活性,发现Pt纳米颗粒表面原子比Mg Al_2O_4载体表面Pt单原子本征活性更高(4807 h–1 versus 3277 h–1).综上,Pt单原子催化剂具有贵金属原子利用率高,本征活性和加氢选择性高等优点;Pt纳米催化剂表面原子深度加氢能力强,加氢选择性较差,虽本征活性更高,但不足以补偿贵金属原子利用率降低带来的活性损失,Pt质量比活性显著低于单原子催化剂.此外,Mg Al_2O_4尖晶石负载的单原子Pt催化剂也具有良好的催化反应循环稳定性,是一种较为理想的催化苯甲醛选择性加氢制苯甲醇催化剂.  相似文献   

14.
徐华龙  黄静静  杨新艳  杜俊明  沈江  沈伟 《化学学报》2006,64(16):1615-1621
以K-MnO/γ-Al2O3和Cu/SiO2为催化剂,利用固定床串联反应器实现了苯甲酸甲酯连续加氢合成无氯苯甲醇反应过程.K-MnO/γ-Al2O3和Cu/SiO2催化剂对于苯甲酸甲酯连续加氢合成苯甲醇具有良好的加氢活性,反应转化率可达89.2%,苯甲醇的选择性为84.1%.在苯甲酸甲酯加氢连续步骤中的氢醛比得到提高,有效地抑制了副产物甲苯的生成.XRD,SEM和TPR表征结果表明:采用吸附沉淀法制备的Cu/SiO2-C15.2催化剂,氧化铜在载体上具有良好的分散性能,并且易于还原,表现出最佳的苯甲醛加氢活性.  相似文献   

15.
采用PVP保护乙醇还原法(ER)和沉积沉淀法(DP)制备了Au-Pd/CeO2催化剂,研究了催化剂的制备方法对甲醇部分氧化性能的影响,并运用XRD,TPD和TPR等手段对催化剂进行了表征。结果表明,Au-Pd/CeO2(DP)催化剂有较高的催化活性和氢气选择性,623 K时甲醇完全转化,氢气选择性高达38.7%。与Au-Pd/CeO2(ER)催化剂相比,Au-Pd/CeO2(DP)催化剂形成的AuxPdy粒径较小,分散性较好,对甲醇的吸附量较大和吸附温度较低,同时Au-Pd与载体的相互作用较强。  相似文献   

16.
醇类化合物选择性氧化是有机合成中一个非常重要的反应, 在精细化工领域具有重要应用. 而以水为绿色溶剂, 分子氧为绿色氧化剂实现醇类化合物选择性氧化是绿色化学领域的一大挑战. Pt 催化剂由于其优异的活化氧气和 C-H 键的能力在该反应中得到了广泛应用. 但是, 常规的 Pt 催化剂通常需要在较高温度和较高氧气压力以及加碱的条件下才能发挥作用, 从而引起了催化剂腐蚀等一系列问题. 从绿色化学角度出发, 进一步优化 Pt 催化剂, 让其能够在室温无碱条件下以空气为氧化剂选择性氧化醇类合成羰基化合物具有重要的研究价值和应用前景.本文通过化学还原法制备了 Pt/ZnO 催化剂, 系统研究了该催化剂在水相无碱条件下选择性氧化苯甲醇生成苯甲醛反应中的催化性能. X 射线电子衍射和透射电镜等结果表明, Pt 颗粒较小(3.2 ± 0.3 nm), 均匀分散在 ZnO 载体上; X 射线光电子能谱表明 ZnO 载体能够稳定 Pt 纳米颗粒表面的 Pt0物种. 上述催化剂在水相苯甲醇选择性氧化反应中, 在室温下即可催化空气高选择性氧化苯甲醇到苯甲醛 (选择性>99%), 并表现出比 Pt/SiO2, Pt/Al2O3, Pt/TiO2, Pt/Ca(Mg)-ZSM-5 等催化剂更为优异的催化活性. 这可归结于 Pt 和 ZnO 之间的协同作用. 该协同作用通过动力学实验和密度泛函理论计算 (DFT)得到了证实. 氧分压实验表明, 在以空气为氧化剂时, O2的活化并不是限制 Pt/ZnO 催化活性的关键因素, 而动力学同位素效应实验则证实了苯甲醇的 C-H 键活化是整个反应的决速步骤. 通过构建不同的理论模型, 分别计算了 Pt/ZnO 界面处以及纯 Pt 位点上苯甲醇选择性氧化的反应过程. 结果表明, 苯甲醇和氧气分子倾向于分别在 ZnO 和 Pt 上进行吸附, 随后由吸附的氧气分子来活化苯甲醇中的 C-H 键, 进而生成苯甲醛和水. 而当 ZnO 不参与苯甲醇的吸附活化时, 整个反应的活化能会大大提高, 表明 ZnO 和 Pt 之间的协同作用对于整个反应至关重要. 此外, Pt/ZnO 表现出非常优异的稳定性, 循环使用 4 次后, 催化剂结构以及催化活性没有显著变化.进一步向 Pt/ZnO 催化剂中引入少量 Bi 元素对 Pt 的电子结构进行修饰, 可以将 Pt/ZnO 的催化活性提高 3 倍. 所制备的 Pt/Bi-ZnO 复合物是目前报道的相同条件下催化苯甲醇选择性氧化反应转化频率 (45.1 h-1)最高的催化剂.  相似文献   

17.
苏浩  杨春 《应用化学》2014,31(8):958-964
以Keggin结构的几类杂多酸和三乙胺(TEA)为原料,通过简单的酸碱反应合成了相应杂多酸的TEA盐。 并以它们作为催化剂,30%H2O2作氧化剂,在不使用长链相转移剂的条件下,研究了它们催化苯甲醇选择氧化制备苯甲醛的反应性能。 结果表明,该类催化剂在苯甲醇的选择氧化反应中具有比相应杂多酸更高的催化活性或选择性。 其中[TEAH]H2PW12O40为最佳催化剂,在适宜的反应条件下,该催化剂上苯甲醇转化率可达99.5%以上,苯甲醛选择性达~100%。 催化剂可以被分离和循环使用多次,活性、选择性基本不变。 用水作溶剂,避免了有机溶剂的使用,是一个高效、绿色的苯甲醛选择氧化体系。  相似文献   

18.
醇类化合物选择性氧化是有机合成中一个非常重要的反应,在精细化工领域具有重要应用.而以水为绿色溶剂,分子氧为绿色氧化剂实现醇类化合物选择性氧化是绿色化学领域的一大挑战.Pt催化剂由于其优异的活化氧气和C-H键的能力在该反应中得到了广泛应用.但是,常规的Pt催化剂通常需要在较高温度和较高氧气压力以及加碱的条件下才能发挥作用,从而引起了催化剂腐蚀等一系列问题.从绿色化学角度出发,进一步优化Pt催化剂,让其能够在室温无碱条件下以空气为氧化剂选择性氧化醇类合成羰基化合物具有重要的研究价值和应用前景.本文通过化学还原法制备了Pt/ZnO催化剂,系统研究了该催化剂在水相无碱条件下选择性氧化苯甲醇生成苯甲醛反应中的催化性能.X射线电子衍射和透射电镜等结果表明,Pt颗粒较小(3.2±0.3 nm),均匀分散在ZnO载体上;X射线光电子能谱表明ZnO载体能够稳定Pt纳米颗粒表面的Pt~0物种.上述催化剂在水相苯甲醇选择性氧化反应中,在室温下即可催化空气高选择性氧化苯甲醇到苯甲醛(选择性99%),并表现出比Pt/SiO_2,Pt/Al_2O_3,Pt/TiO_2,Pt/Ca(Mg)-ZSM-5等催化剂更为优异的催化活性.这可归结于Pt和ZnO之间的协同作用.该协同作用通过动力学实验和密度泛函理论计算(DFT)得到了证实.氧分压实验表明,在以空气为氧化剂时,O_2的活化并不是限制Pt/ZnO催化活性的关键因素,而动力学同位素效应实验则证实了苯甲醇的C-H键活化是整个反应的决速步骤.通过构建不同的理论模型,分别计算了Pt/ZnO界面处以及纯Pt位点上苯甲醇选择性氧化的反应过程.结果表明,苯甲醇和氧气分子倾向于分别在ZnO和Pt上进行吸附,随后由吸附的氧气分子来活化苯甲醇中的C-H键,进而生成苯甲醛和水.而当ZnO不参与苯甲醇的吸附活化时,整个反应的活化能会大大提高,表明ZnO和Pt之间的协同作用对于整个反应至关重要.此外,Pt/ZnO表现出非常优异的稳定性,循环使用4次后,催化剂结构以及催化活性没有显著变化.进一步向Pt/ZnO催化剂中引入少量Bi元素对Pt的电子结构进行修饰,可以将Pt/ZnO的催化活性提高3倍.所制备的Pt/Bi-ZnO复合物是目前报道的相同条件下催化苯甲醇选择性氧化反应转化频率(45.1 h~(-1))最高的催化剂.  相似文献   

19.
ZnO对Au-Pd/CeO_2催化剂甲醇部分氧化制氢性能的影响   总被引:1,自引:0,他引:1  
采用沉积沉淀法制备了Au-Pd双金属催化剂, 研究了ZnO对Au-Pd/CeO_2催化剂甲醇部分氧化性能的影响, 并运用N_2吸附、 XRD、 UV-Vis、 TPR、 H2-TPD和CO-IR等手段对催化剂进行了表征. 结果表明, ZnO的引入减少了Pd活性中心, 降低了催化剂的活性, 但提高了催化剂H2选择性和降低了CO选择性. Au-Pd/ZnO-CeO_2催化剂的TPR表明, 在约200℃时开始有部分ZnO被还原, CO-IR显示CO吸收峰移向低频, 这些结果表明Au-Pd/ZnO-CeO_2催化剂中Pd和Zn之间发生了相互作用. Pd和Zn之间相互作用抑制了Pd的甲醇分解活性, 有利于H2和CO_2的生成, 使Au-Pd/ZnO-CeO_2催化剂表现出较高的H2选择性和较低的CO选择性.  相似文献   

20.
还原剂对Au-Pd/CeO2催化剂甲醇部分氧化性能的影响   总被引:2,自引:2,他引:0  
以PVP为保护剂,乙醇(ER)、乙二醇(GR)和水合肼(HR)为还原剂制备了一系列Au-Pd/CeO2催化剂,考察了还原剂对甲醇部分氧化性能的影响,并运用XRD、TPD和TPR等手段对催化剂进行了表征。结果表明,Au-Pd/CeO2(ER)催化剂具有较大的比表面积,形成的AuxPdy量较多、粒径较小、分散度较高、活性组分与载体的相互作用较强,同时对甲醇的吸附量较大和吸附温度较低。因此,该催化剂具有较高的催化活性和氢气选择性以及较低的CO质量分数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号