首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文采用红外光谱法研究了前无报导的聚异苯橡胶环化反应动力学,测定了标题反应的动力学参数:反应级数n=1;活化能Ea=53.2kJ·mol-1;指前因子A=2.24×106min-1,确立了该反应速率常数kT与s反应温度T之间的函数关系为:Ln(kT/min-1)=14.62-6.40×103K/T并采用核磁共振法分析了标题反应的产物环化异苯橡胶的微细结构,提出了标题反应的可能机理,并对活化能及指前因子进行了分析讨论。  相似文献   

2.
采用热重和微商热重(TG/DTA)综合热分析技术在不同升温速率下研究了掺入La(NO3)3和Pr(NO3)3的高岭石的热分解过程, 利用Coats-Redfern积分法和Achar微分法对热分析实验数据进行动力学计算, 得到了高岭石脱羟基反应过程中的控制机理函数、 活化能和指前因子等动力学参数; 分析了2种稀土掺入对高岭石脱羟基过程动力学参数的影响, 并用Ozawa法对活化能进行了验证. 结果表明, 未掺稀土和掺入Pr(NO3)3的高岭石的脱羟基反应过程均受化学反应模型F3控制, 反应的活化能分别为307.94和282.86 kJ/mol, 指前因子lnA的值分别为47.8980和44.1718; 掺入La(NO3)3的高岭石脱羟基反应过程控制机理函数发生改变, 受化学反应模型F2控制, 反应活化能为196.02 kJ/mol, 指前因子lnA的值为29.5551. 与未掺稀土的高岭石对比, 掺入Pr(NO3)3后活化能和指前因子略有降低; 而掺入La(NO3)3后则显著降低, 分别降低了36.34%和38.30%. 采用Ozawa法验证得到的活化能与Coats-Redfern积分法和Achar微分法结果一致.  相似文献   

3.
本文由氧化石墨烯通过水热法制备直接获得石墨烯。采用热重-差热分析方法检测了石墨烯受热过程中的质量变化和氧化温度。利用热分析-质谱联用技术在400-650 ℃温度区间得到了水和二氧化碳正离子质谱峰,这说明石墨烯氧化过程中的质量损失是由羟基水和二氧化碳脱除造成的。同时,还采用非等温热分析动力学方法,利用5、10、15 ℃·min-1三种不同升温速率获得了石墨烯材料在空气气氛下的热分析动力学参数。通过Kissinger方法计算出石墨烯氧化过程中的活化能(Ea)和指前因子的对数(lg(A/s-1))分别为155.11 kJ·mol-1和6.90。利用Ozawa-Flynn-Wall (FWO)方法还建立了活化能和指前因子与反应转化率之间的关系。基于以上研究结果,本工作将对石墨烯在热界面、导热和先进复合材料等领域的应用提供参考价值。  相似文献   

4.
选用合理简化的焦炭模型,对煤焦燃烧过程中N2O的异相生成和分解机理进行了分子水平上的研究。采用UB3LYP/6-31G(d)密度泛函理论方法优化得到了反应路径上反应物、产物、中间体和过渡态的几何构型和各中间反应的活化能和反应焓变。NO与其预先吸附在焦炭表面解离生成的表面氮组分反应生成N2O的路径有两个,需要克服的势垒分别为69.3kJ/mol和200.0kJ/mol;NO亦可直接与焦炭中的吡啶氮结合释放出N2O,该反应路径所需克服的最大势垒为418.0kJ/mol。N2O可在焦炭表面分解释放出N2,异相分解反应为一步反应,计算所得活化能为100.8kJ/mol。N2O的异相生成和异相分解反应均为放热反应。采用经典过渡态理论计算得到了各路径中速率控制步骤的反应速率常数。低温条件下,N2O的异相分解反应速率略低于其异相生成速率,随着温度的升高,两者逐渐接近,说明高温条件有利于N2O的异相分解。  相似文献   

5.
分别以MgO和Al(OH)3为镁源及铝源,采用水热法制备Mg-Al LDH,研究了水热温度和氢氧化钠浓度对水热产物纯度的影响。结果显示在NaOH/MgO/Al(OH)3/(Na2CO3)摩尔比为2∶1∶0.5∶0.25,水热反应温度在120~150℃,反应12 h,可以得到纯相Mg-Al LDH。进一步以所制备的Mg-Al LDH为吸附剂,H2O2为氧化剂。系统研究了Mg-Al LDH/H2O2体系溶液pH、H2O2用量、污染物浓度、反应温度、反应时间等因素对Mg-Al LDH/H2O2体系降解水体中环丙沙星效果的影响。当Mg-Al LDH用量为0.05 g,H2O2用量为2 mL,系统pH为6.98,反应温度为35℃,环丙沙星浓度为30 mg·L-1时,反应13 min环丙沙星的降解率可达97%。随着反应温度的升高,反应速率及平衡时降解率均有所提高,该过程可以用拟一级动力学方程描述,反应的表观活化能E a为19.29 kJ·mol-1,指前因子A为0.38×103 min-1。Mg-Al LDHs/H2O2体系降解环丙沙星过程受反应速率控制,而非受传质控制。  相似文献   

6.
采用分子动力学模拟的方法,研究了LiCl-KCl-CeCl3熔盐中CeCl3的结构性质和热力学,获得了LiCl-KCl-CeCl3熔盐中密度与组成、密度与温度的关系数据;径向分布函数gCe-Cl(r)的第一个峰位置为0.259nm, Ce3+对应的第一个配位数约为6.9;混合熔盐中计算数据与纯熔盐中数据的差异可以解释为混合熔盐中Ce3+和Cl-的相互作用比纯的CeCl3更强; LiCl-KCl熔盐中Ce3+的自扩散活化能为22.5 kJ·mol-1,从活化能的本质来说, Ce3+自扩散所需要克服的能垒要略低于U3+(25.8 kJ·mol-1)。当Ce3+的摩尔分数从0.005增加到0.05时,其指前因子从31.9×10-5 cm2·s-1减少到21.8×10-5 cm2·s-1;随着Ce3+摩尔分数从0.005增长到0.05,单位体积内(忽略总体积的变化)Ce3+的增加意味着其扩散阻力增加,而自扩散的能力降低,导致了指前因子的减小。  相似文献   

7.
为了探索3,6-二羟基哒嗪分子醇式和酮式结构互变异构化的反应机理,本研究组采用DFT B3LYP/6-311+G(d)方法对标题化合物异构化反应的势能面进行了研究,在探讨各种可能的反应途径中,发现至少有34种异构体和43种过渡态.结果表明,6-羟基-3(2H)-哒嗪酮不论是单体,与水形成配合物,还是二聚体,比其相对应的异构体能量低,表明在通常情况下是以6-羟基-3(2H)-哒嗪酮形式稳定存在的,这与前人通过实验数据对互变异构体的比率进行预测的结果是一致的;在考察的可能反应途径中,直接进行的分子内质子转移过程需要的活化能为142.2 kJ·mol-1,水助催化时,反应活化能为41.3 kJ·mol-1,考虑溶剂效应后,其活化能为59.2 kJ·mol-1,二聚体双质子转移的活化能为16.8 kJ·mol-1,二聚体双质子转移所需活化能最低,在室温下就可以进行.由此可见氢键在降低反应活化能方面起着重要的作用.  相似文献   

8.
利用热重研究了两种中国西北典型低阶煤半焦的燃烧特性。探究了不同气氛(O2/CO2、O2/N2和O2/Ar)和不同氧气浓度对其燃烧特性的影响。实验结果表明,无论是反应气氛还是氧气浓度都会对低阶煤半焦的燃烧产生影响。相比于N2和Ar,CO2明显有利于燃烧反应进行:当反应气氛由O2/CO2变为O2/Ar时,两种不同低阶煤半焦的燃尽温度分别升高了63.7和68.8℃;而当反应气氛由O2/CO2变为O2/N2时,两种不同低阶煤半焦的燃尽温度分别升高了135.9和129.6℃。在研究范围内,氧气浓度的提高也能明显提高半焦的燃烧性能。与此同时,半焦燃烧特性的动力学分析表明,随着氧气浓度提高,两种半焦燃烧反应的表观活化能E和指前因子A均呈增大趋势。通过对E和A两者关系的分析结果表明,半焦富氧燃烧的活化能和指前因子存在动力学补偿效应。  相似文献   

9.
梁晓琴  蒲雪梅  田安民 《化学学报》2010,68(16):1568-1576
采用密度泛函理论(DFT)方法在B3LYP/aug-cc-pvDZ理论水平上研究了CN, NO2, NH2, N3, N2H, NHNH2, N4H和N4H3等含氮取代基取代五嗪环上的氢原子生成的衍生物, 预测了它们的分子构型、分解能及含能性质. 对衍生物分解能的研究结果表明, CN和NH2取代的衍生物的分解能比未取代时更高, 而其余基团的取代使分解能降低; 取代基化合物的生成热越大, 取代五嗪中的氢原子后生成衍生物的生成热也越大. N4H3, NO2, H, N2H, N4H, N3和CN取代的五嗪衍生物的单位原子生成热为72.6~108.9 kJ, 比文献报道的三叠氮基-均三嗪的(70.2 kJ)更高. 对于CN, N2H, N4H3, N3和N4H取代的衍生物, 其生成热为871.4~1159.3 kJ•mol-1, 但N4H和N4H3的分解能较小, 稳定性较差. 因此, N3, N2H和CN取代的衍生物可能成为高能量、低感度的含能材料.  相似文献   

10.
对LiNd(PO3)4晶体分别在N2气和空气下进行了TG和DTA热分析研究,给出TG和DTA曲线,讨论了LNP晶体在N2气和空气下不同的热分解机理.得到分解产物分别为Nd4(P2O7)3和NdP2O7.  相似文献   

11.
松香和枞酸在聚乙烯膜上氧化反应动力学研究   总被引:1,自引:0,他引:1  
设计了松香和枞酸在聚乙烯膜上的氧化反应器, 建立了枞酸在聚乙烯膜上的紫外分光光度分析方法, 跟踪测定了松香和枞酸氧化反应的过程. 实验结果表明, 松香和枞酸的氧化反应均呈现表观一级反应. 枞酸的氧化反应温度为30, 35, 40, 45, 50和55 ℃时, 表观速率常数分别为0.0036, 0.0041, 0.0062, 0.0087, 0.011和0.0157 min-1, 表观反应活化能Ea为50.29 kJ/mol. 松香的氧化反应温度为35, 40和45 ℃时, 表观速率常数分别为0.0009, 0.0015和0.0025 min-1 , 表观反应活化能Ea为80.2 kJ/mol.  相似文献   

12.
苯的硝基和叠氮基衍生物的理论研究   总被引:2,自引:0,他引:2  
在密度泛函理论B3LYP/6-31G*水平下优化了91个苯的硝基(NO2)和叠氮基(N3)衍生物的分子几何构型, 预测了它们的密度和生成热, 采用Kamlet-Jacobs方法计算了爆速和爆压, 筛选得到11种爆轰性能较好的高能量密度化合物(HEDC), 计算了它们的多个可能的热解引发键的键离解能(BDE)以及按“氧化呋咱机理”分解时的活化能(Ea). 结果表明, 当分子中有NO2与N3相邻时, 分解按“氧化呋咱机理”进行, 分解反应的Ea均大于100 kJ/mol|分子中没有NO2和N3相邻时, 热解始于C-NO2或C-N3均裂, 裂解的BDE都大于200 kJ/mol. 只含NO2或N3的7个物质的稳定性好于同时含NO2和N3的物质, 而只含N3的物质的稳定性又好于只含NO2的物质, 五叠氮苯和六叠氮苯具有很出色的爆轰性能和稳定性. 无论是能量还是稳定性方面, 筛选得到的11种物质基本符合HEDC的要求.  相似文献   

13.
在H2O2/WO3/ZrO2氧化体系中对以甲苯为溶剂、二苯并噻吩(DBT)为模型含硫化合物的模拟油品(硫的质量分数为1540×10-6)进行了氧化脱硫研究,考察了反应温度、反应时间、氧化剂加入量、催化剂用量对DBT转化率的影响。实验结果表明,在反应温度50℃,反应时间90min,氧化剂加入量油/H2O2的体积比为20∶1和催化剂用量0.02g/mL的适宜氧化脱硫条件下,96%以上的DBT氧化为容易分离脱除的二苯并噻吩砜(DBTOs);同时研究了DBT氧化反应动力学,得知DBT氧化反应为一级反应,表观活化能Ea为55.37kJ/mol,指前因子A为3.35×107min-1。  相似文献   

14.
采用CCSD(T)//B3LYP/6-311+G(d,p)方法研究了H2O及甲酸等6种有机酸对CH3CHOO与H2O加成反应的催化作用。结果表明,非催化反应存在双质子迁移和加成反应2条通道,其中加成反应为优势通道。其加成机理为H2O中OH加到CH3CHOO的α-C上,同时H2O中另一个H迁移到CH3CHOO的端O上。催化剂H2O及有机酸以氢键复合物的形式参与反应促进了H质子转移,可降低基元反应能垒和表观活化能,且催化效应与有机酸的强度成正比。例如,当分别用H2O(pKa=15.7)、甲酸(pKa=3.75)和草酸(pKa=1.23)催化时,生成syn-HAHP的基元反应能垒由非催化的69.12 kJ·mol-1分别降至40.78、18.88和10.61 kJ·mol-1。非催化反应具有正的表观活化能,而所有催化反应则均具有负的表观活化能。  相似文献   

15.
本文以CO氧化为探针反应探讨了CeZr-MOFs材料碳化制备CeO2-ZrO2复合氧化物(ZCM)对Pd组分的分散性及催化性能影响,通过对比球状CeO2-ZrO2复合氧化物(ZCS)载体,获得了MOF碳化制备复合氧化物载体的优势及对金属Pd组分催化作用的改善机制。结果表明,负载型Pd/ZCM催化剂的活化能为116.4 kJ·mol-1,相比Pd/ZCS催化剂的活化能126.8 kJ·mol-1更低;Pd/ZCM催化剂的起燃温度T50和T90分别低至52℃和56℃,均比Pd/ZCS催化剂的T50(78℃)和T90(93℃)低,显示了更优的低温CO催化氧化性能。相对于球形ZCS载体,ZCM载体上Pd组分的分散稳定性更好,Pd分散度和单位Pd的表面吸附氧量分别约为Pd/ZCS催化剂上的1.4和1.2倍左右,更有利于CO低温氧化性能提升。以CeZr-MOF材料碳化制备CeO  相似文献   

16.
本研究采用不等温热重法研究六种纤维(针叶、阔叶、竹、亚麻、草和棉)在N2和空气气氛下的热解和燃烧特性,并采用Friedman法对其进行动力学分析。结果表明,纤维不同的热解和燃烧特性参数与其自身结构组成有关。纤维在热解和燃烧过程中,其挥发分析出温度Ts、终止温度Th、DTG峰温Tmax、固定碳燃烧峰温、最大质量损失速率、热解指数P和燃烧指数S均随着升温速率的增加而增加;在N2气氛下,亚麻纤维Tmax最大,竹纤维Tmax最小,棉纤维的Ts最大,草纤维的最大热解质量损失速率-(dm/dt)max、热解指数P和燃烧指数S均最小;在转化率为0.05-0.85条件下,阔叶纤维平均表观活化能最小(173.3 kJ/mol),竹纤的最大(201.10 kJ/mol)。在空气气氛下,所有纤维的热解过程的Tmax均低于N2条件下,在转化率为0.05-0.65时,纤维在空气中热解的表观活化能Eα  相似文献   

17.
在无水乙醇中,使低水合氯化稀土(RE=La, Pr, Nd, Sm)与吡咯烷二硫代氨基甲酸铵(APDC)和1,10-邻二氮菲(σ-phen·H2O)反应,制得其三元固态配合物.用化学分析和元素分析确定它们的组成为RE (C5H8NS2)3(C12H8N2) (RE= La, Pr, Nd, Sm).IR光谱说明RE3+分别与3个PDC-的6个硫原子双齿配位,同时与σ-phen的2个氮原子双齿配位,配位数为8.用精密转动弹热量计测定了它们的恒容燃烧热ΔcU,分别为-17776.94±7.72, -17810.41±7.93, -17762.71±7.91和-17482.42±9.35 kJ·mol-1;并计算了它们的标准摩尔燃烧焓和标准摩尔生成焓,分别为-17792.43±7.72, -17825.90±7.93, -17778.20±7.91, -17497.91±9.35 kJ*mol-1和-83.05±8.60, -64.70±9.40, -104.77±8.78, -388.70±10.13 kJ·mol-1.估算出未研究的同类配合物Ce(C5H8NS2)3(C12H8N2)和Pm(C5H8NS2)3(C12H8N2)的和分别为-17815, -17660 kJ·mol-1和-60, -217 kJ·mol-1.  相似文献   

18.
UV/H_2O_2体系中SF Blue染料的降解动力学   总被引:1,自引:0,他引:1  
对UV/H2O2处理SFBlue制衣染料溶液的效果及其影响因素和动力学进行了研究。结果表明,UV/H2O2对SFBlue染料废液具有很好的处理效果,且在发生光助氧化降解的同时还伴随着光分解反应。UV/H2O2体系的光助氧化反应和UV体系的光分解反应均为表观一级反应,前者活化能5.17kJ/mol,指前因子0.168min-1,后者活化能16.9kJ/mol,指前因子1.04min-1。染料溶液初始pH为强碱性(pH=12)时染料降解率最大。  相似文献   

19.
在Pt/Al2O3催化剂上用外循环反应器研究了内扩散对苯完全氧化动力学的影响,当用30~40目(即0.45~0.60mm)催化剂时反应在动力学区域进行.若O2过量时则动力学区域苯的完全氧化可用-0.9级速率方程描述.当催化剂粒径增至φ6×5mm时,反应在内扩散区域进行并变为一0.1级反应.催化剂有效因子η在0.24~0.12之间.在同一温度下,η实验随苯分压p的增加而增大;而p相近时,η实验则随温度的升高而减小.动力学区域的反应活化能为55.5kJ/mol,内扩散区域的反应活化能为34.9kJ/mol,其值约为动力学区域的活化能与苯分子扩散活化能的算术平均值.  相似文献   

20.
采用共沉淀法制备了LaMnAl11O19六铝酸盐催化剂,采用XRD、BET和XPS对样品结构进行了表征,并通过模拟生物质气化气的燃烧实验和NH3单独氧化实验,分别考察了催化燃烧和均相燃烧过程中NH3的转化特性。利用原位漫反射红外光谱(in-situ DRIFT)法在线研究了NH3在催化剂表面的吸附和氧化信息。结果表明,焙烧后催化剂形成磁铅石(MP)结构的六铝酸盐晶体,且具有较大的比表面积,Mn以+2、+3价形式存在晶体中。均相燃烧下模拟气中的NH3在500℃开始反应,随之就有NO生成。催化燃烧工况下NH3氧化曲线和模拟气中NH3的转化曲线相差不大,NH3的起燃温度为310℃,反应后随之就有NO生成,NO在350℃~800℃保持一个较高的浓度。NO2的生成温度较高,并仅在较窄的温度区间内出现,在整个燃烧过程中仅检测到几个10-6的N2O,反应过程中有40%以上的NH3转化成NO。DRIFT结果表明,催化剂作用下NH3的转化遵循 -NH反应机理,即催化剂表面吸附的NH3分解产生 -NH,-NH与氧原子(O)反应生成HNO,再进一步反应生成N2或N2O,或是 -NH直接与氧分子(O2)反应生成NO。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号