首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
在B3LYP/aug-cc-pvDZ理论水平上研究了CN,NO2,NH2,N3,N2H,NHNH2,N4H和N4H3含氮取代基取代1,2,4,5-四嗪环上的两个氢原子生成的衍乍物,预测了它们的分f构犁、分解能及含能性质.对衍生物分解能的研究结果表明.CN取代的衍生物的分解能比未取代时更高,而其余基团的取代使分解能降低.生成热的研究显示取代基化合物的生成热越大,取代1,2,4,5-四嗪中的氢原子后生成衍生物的牛成热也越大;CN,N3和N4H取代的1,2,4,5-四嗪衍生物的单位原子生成热在83.1~95.2 kJ,比文献报道的三叠氮基-均三嗪的(70.2 kJ)更高;N4H,N3,N4H3,N2H和CN取代的1,2,4,5-四嗪衍生物,生成热在904.9~1496.6 kJ·mol-1,但N4H和N4H3取代的衍生物分解能较小,稳定性较差.  相似文献   

2.
均三嗪含氮取代基衍生物的结构和性质   总被引:2,自引:0,他引:2  
在B3LYP/aug-cc-pvDZ理论水平上研究了—CN、—NO2、—NH2、—N3 、—N2H、—NHNH2、—N4H和—N4H3等含氮取代基取代均三嗪环上的氢原子生成的衍生物, 预测了它们的分子构型、分解能及含能性质. 对衍生物分解能的研究结果表明, —CN 和—NH2取代的衍生物的分解能比未取代时更高, 而其余基团的取代使分解能降低; 取代基化合物的生成热越大, 取代均三嗪中的氢原子后生成衍生物的生成热也越大. —CN、—N3和—N4H取代的均三嗪衍生物的单位原子生成热为71.9、78.7 和82.6 kJ, 比文献报道的三叠氮基-均三嗪的(70.2 kJ)更高. —N4H、—N3 、—N4 H3 、—N2 H和—CN取代的均三嗪衍生物, 生成热为863.1-1735.2 kJ·mol-1, 但—N4H和—N4H3取代的衍生物分解能较小,稳定性较差.  相似文献   

3.
苯的硝基和叠氮基衍生物的理论研究   总被引:2,自引:0,他引:2  
在密度泛函理论B3LYP/6-31G*水平下优化了91个苯的硝基(NO2)和叠氮基(N3)衍生物的分子几何构型, 预测了它们的密度和生成热, 采用Kamlet-Jacobs方法计算了爆速和爆压, 筛选得到11种爆轰性能较好的高能量密度化合物(HEDC), 计算了它们的多个可能的热解引发键的键离解能(BDE)以及按“氧化呋咱机理”分解时的活化能(Ea). 结果表明, 当分子中有NO2与N3相邻时, 分解按“氧化呋咱机理”进行, 分解反应的Ea均大于100 kJ/mol|分子中没有NO2和N3相邻时, 热解始于C-NO2或C-N3均裂, 裂解的BDE都大于200 kJ/mol. 只含NO2或N3的7个物质的稳定性好于同时含NO2和N3的物质, 而只含N3的物质的稳定性又好于只含NO2的物质, 五叠氮苯和六叠氮苯具有很出色的爆轰性能和稳定性. 无论是能量还是稳定性方面, 筛选得到的11种物质基本符合HEDC的要求.  相似文献   

4.
采用量子化学密度泛函理论(DFT)对NO与NHi自由基的反应机理进行了研究,并结合经典过渡态理论对各反应速率常数进行了计算。结果表明,NO与NH2自由基的反应体系可通过六个反应通道形成N2+H2O、N2O+H2和N2H+OH。从能量变化和反应速率两方面考虑,产物N2+H2O最容易生成,其最佳反应通道为NO+NH2→→N2+H2O;NO与NH自由基的反应体系可通过七个反应通道形成N2+OH、N2O+H和N2H+O;其中,N2+OH最容易生成,最佳反应通道为NO+NH→→N2+OH。比较发现, NH比NH2自由基更易与NO发生反应生成N2。因此,在实际运行中改变操作条件,实现NH2等向NH方向转化,有利于NOx的还原。  相似文献   

5.
杨洁  凌琳  李玉学  吕龙 《化学学报》2023,(4):328-337
深入理解高氯酸铵的热分解机理,对于优化固体推进剂配方设计十分重要.我们采用对称破缺密度泛函方法(BS-UB3LYP/6-311+G(d,p)),对高氯酸铵的热分解机理进行了系统的梳理和深入研究.首先,高氯酸铵通过质子转移,生成HClO4和NH3,从吸附态进入气相.进而高氯酸的Cl—OH键均裂,生成羟基自由基·OH和三氧化氯自由基·ClO3,它们优先和NH3反应,生成·NH2.·NH2和HClO4反应生成·ClO4自由基,进而和NH3反应生成H2NO,再被自由基物种拔H生成NO. NO和·OH反应生成NO2,和·NH2及·OH反应生成N2O.这些产物与诸多实验观测结果一致.  相似文献   

6.
具有五元环结构的偶氮化合物4,4-二甲基-4,5-二氢-3H-吡咯(N2C5H10),与Fe3(CO)12在甲苯中加热回流反应,生成双铁六羰基配合物Fe2(N2C5H10)(CO)6(1).反应中N=N双键被还原,配体以(N2C5H102-的形式与FeIFeI配位,形成具有蝶形结构的34e-化合物.研究了在脱羰基试剂Me3NO存在条件下,1和单齿膦配体PR3反应生成Fe2(N2C5H10)-(CO)5(PR3)(PR3=PPh3,2a;PCy3,2b)单取代配合物.光照条件下,化合物1中的CO配体还可以被双齿膦配体dppe[dppe=1,2-C2H4(PPh22]和dppbz[dppbz=1,2-C6H4(PPh22]取代,生成产物的类型和膦配体的夹角相关.与夹角较大的dppe反应,生成桥连产物Fe2(N2C5H10)(CO)4μ-dppe)(3a);而与刚性较大的dppbz反应时,Fe2(NR)2的蝶形结构打开呈四元环;其中一个Fe上的CO被取代,dppbz与该Fe中心螯合,生成具有桥连CO的化合物Fe2(N2C5H10)(μ-CO)(CO)4κ2-dppbz)(3b).合成具有FeI-CO-FeI结构的羰基化合物,一直是模拟[FeFe]氢化酶活性中心还原态结构Fe2(SR)2μ-CO)-(CO)5-xLx的重要挑战.该类Fe2(NR)2(CO)6-x(PR3x化合物的合成,能为探索模拟[FeFe]氢化酶活性中心结构提供新的途径和思路.以上化合物均通过核磁[31P(1H)NMR]、红外光谱(IR)、元素分析及X射线单晶结构衍射等表征.  相似文献   

7.
Ag-ZSM-5催化剂上CH4选择催化还原NOx的研究   总被引:3,自引:0,他引:3  
摘要研究Ag-ZSM-5催化剂上CH4选择性催化还原NOx的反应性能,采用TPD和TPSR技术研究NO和O2共吸附于Ag-ZSM-5催化剂表面形成的吸附物种及其和CH4之间的反应。结果表明,Ag-ZSM-5催化剂上CH4选择性还原NOx活性和选择性较高。NO和O2共吸附在Ag-ZSM-5催化剂上形成的NO3(s)吸附物种能被CH4还原生成N2.在NO3(s)和O2共存的体系中,CH4能优先并选择性还原NO3(s)生成N2.  相似文献   

8.
采用共沉淀法制备了LaMnAl11O19六铝酸盐催化剂,采用XRD、BET和XPS对样品结构进行了表征,并通过模拟生物质气化气的燃烧实验和NH3单独氧化实验,分别考察了催化燃烧和均相燃烧过程中NH3的转化特性。利用原位漫反射红外光谱(in-situ DRIFT)法在线研究了NH3在催化剂表面的吸附和氧化信息。结果表明,焙烧后催化剂形成磁铅石(MP)结构的六铝酸盐晶体,且具有较大的比表面积,Mn以+2、+3价形式存在晶体中。均相燃烧下模拟气中的NH3在500℃开始反应,随之就有NO生成。催化燃烧工况下NH3氧化曲线和模拟气中NH3的转化曲线相差不大,NH3的起燃温度为310℃,反应后随之就有NO生成,NO在350℃~800℃保持一个较高的浓度。NO2的生成温度较高,并仅在较窄的温度区间内出现,在整个燃烧过程中仅检测到几个10-6的N2O,反应过程中有40%以上的NH3转化成NO。DRIFT结果表明,催化剂作用下NH3的转化遵循 -NH反应机理,即催化剂表面吸附的NH3分解产生 -NH,-NH与氧原子(O)反应生成HNO,再进一步反应生成N2或N2O,或是 -NH直接与氧分子(O2)反应生成NO。  相似文献   

9.
合成了2,6-二甲基-γ-吡喃酮、咪唑和吡啶铈(Ⅳ)的氯化物,化学式为(C7H8O2H)2CeCl6、(C3H4N2H)2CeCl6和(C4H9NH)4CeCl8.采用差热、热重分析法比较了上述三种化合物的热稳定性,并配合以电导、红外、紫外光谱等手段进行了结构分析.  相似文献   

10.
在理想平推流反应器中进行了模拟热解气对模拟烟气中NO、N2O的还原实验研究,考察了反应温度、过剩空气系数,模拟热解气中CH4、CO、H2、NH3入口浓度与模拟烟气中NO、N2O入口浓度对NO、N2O与总氮转化率的影响。结果表明,向NH3添加可燃气体CO、H2、CH4可使NO还原窗口向低温方向移动150~200 K,该温度窗口为1 073~1 223 K;但NH3-CO-H2-CH4-O2体系对NO、N2O的还原分解作用依赖于体系的O2浓度,仅在富燃料情形(过剩空气系数λ为0.6)下可分别达60.6%、100%的NO、N2O脱除率;在反应温度1 073~1 223 K及过剩空气系数λ为0.6条件下,较高的热解气CH4、CO、H2浓度可增加NO排放,但有利于还原N2O;增加NH3入口浓度可增加NO分解率。  相似文献   

11.
高氮化合物及其含能材料*   总被引:16,自引:0,他引:16  
高氮含能化合物及其含能材料是新型含能材料领域的研究热点之一。相比于传统的含能材料,高氮含能材料具有很多优异或独特的理化性能和爆轰性能。本文综述了新型高氮化合物及其含能材料的研究进展,介绍了国内外近十年来众多研究小组的相关工作,重点阐述了四嗪、四唑和呋咱3大类高氮含能化合物的合成、性能及应用研究进展。结合作者的研究工作,进一步探讨了高氮含能化合物在钝感高能炸药、推进剂和新型气体发生剂等含能材料领域中的应用前景。  相似文献   

12.
13.
Compelling evidence has been found for the formation and direct detection of the cyclopentazole anion (cyclo‐N5?) in solution. The anion was prepared from phenylpentazole in two steps: reduction by an alkali metal to form the phenylpentazole radical anion, followed by thermal dissociation to yield cyclo‐N5?. The reaction solution was analyzed by HPLC coupled with negative mode mass spectrometry. A signal with m/z 70 was eluted about 2.1 min after injection of the sample. Its identification as N5 was supported by single and double labeling with 15N, which yielded signals at m/z=71 and 72, respectively, with identical retention times in the HPLC column. MS/MS analysis of the m/z=70 signal revealed a dissociation product with m/z=42, which can be assigned to N3?. To our knowledge this is the first preparation of cyclo‐N5? in the bulk. The compound is indefinitely stable at temperatures below ?40 °C, and has a half‐life of a few minutes at room temperature.  相似文献   

14.
15.
16.
多氮杂环化合物由于含氮量高, 具有很高的生成焓, 而且分解产物一般不会对环境造成污染, 因此这类化合物用于环境友好的炸药和推进燃料的前景十分诱人, 成为当前高能量材料的研究热点之一. 利用紫外光电子能谱实验手段和量子化学计算研究了四种多氮杂环化合物[1H-tetrazole (1), 5-aminotetrazole (2), 1,5-diaminotetrazole (3), 1,4-bis(1-methyltetrazol-5-yl)-1,4-dimethyl-2-tetrazene (4)]的电子结构, 提供了这些化合物的电离能: 实验结果表明四个化合物的第一电离能分别为: 11.22, 9.40, 9.27, 9.18 eV; 同时报道了这四个化合物在乙氰溶液中的紫外吸收光谱: 化合物 1~3 均只有一个紫外吸收峰带, 分别为193, 216, 218 nm, 化合物 4 在230和298 nm出现了两个吸收带.  相似文献   

17.
This paper reports the synthesis, characterisation and thermolysis studies of a series of azotetrazolate salts, viz., ammonium/guanidinium/triaminoguanidinium [azotetrazolate]. TG-DTA and DSC results of these compounds exhibited their thermal stability up to 180°C. DSC indicated the highest heat release (2804 J g–1) for guanidinium azotetrazolate salt during exothermic decomposition. FTIR of the decomposition products of azotetrazolate salts showed bands at 3264 and 2358 cm–1 which may be attributed to gaseous species such as NH3 and HCN or NH2CN. The sensitivity data suggests low vulnerability of ammonium and guanidinium salts. In cyclic voltammetric studies all the salts showed similar response in reduction reactions. Triamino guanidinium azotetrazolate (TAGAZ) was incorporated into solid propellant formulations in order to establish the compatibility of this class of compounds. DSC results revealed that it does not have adverse effect on thermal stability of double base matrix. The burning rate data obtained indicated that TAGAZ acts as an efficient energetic additive in composite modified double base (CMDB) propellant formulations in high-pressure region.The authors are grateful to Dr. Haridwar Singh, Outstanding Scientist and Director, HEMRL for constant encouragement to carry out this work. Authors also thankful to Dr. R. S. Satpute, Dr. A. N. Nazare and Dr. C. N. Divekar for their assistance in propellant processing.  相似文献   

18.
 用HREELS, AES, LEED和TDS考察了氮在含氧Mo(100)上的吸附和热脱附. 120 K下氮在含氧Mo(100)上吸附时存在着N—N伸缩振动频率2150和1600 cm-1, 分别对应于线式(γ态)和侧位(α态)两种分子吸附态. 升温引起γ态氮的脱附和α态氮的解离. 其中γ态氮的脱附峰温位于155 K, 遵循一级脱附动力学; 由α态解离生成的N原子占据Mo(100)的四重空位(即β态), 并在高于1?150 K的温度重新化合形成氮而脱附. 120 K时,氮的吸附是无序的; 吸附了氮的表面经1100 K退火后生成了有序的c(2×2)-N表面结构.  相似文献   

19.
Reaction of Co(II) with the nitrogen‐rich ligand N,N‐bis(1H‐tetrazole‐5‐yl)‐amine (H2bta) leads to a mixed‐valence, 3D, porous, metal–organic framework (MOF)‐based, energetic material with the nitrogen content of 51.78%, [Co9(bta)10(Hbta)2(H2O)10]n?(22 H2O)n ( 1 ). Compound 1 was thermohydrated to produce a new, stable, energetic material with the nitrogen content of 59.85% and heat of denotation of 4.537 kcal cm?3, [Co9(bta)10(Hbta)2(H2O)10]n ( 2 ). Sensitivity tests show that 2 is more sensitivity to external stimuli than 1 , reflecting guest‐dependent energy and sensitivity of 3D, MOF‐based, energetic materials. Less‐sensitive 1 can be regarded as a more safe form for storage and transformation to sensitive 2 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号