首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The partial oxidation reaction of mathane over reduced 10wt%Ni/SiO2 catalyst was studied at 600, 650, 700℃ by means of pulse and bond-order conservation Morse-potential (BOC-MP) methods. In the oxidation reaction of surface carbon deposited on the catalyst, it was observed that the product selectivity was subject to the reaction temperature and the selectivity of CO was increased with rasing temperature of CH4/O2, the same trend between CO selectivity and reaction temperature was also observed, implying that the partial oxidation of methane to syngas follows the pyrolysis mechanism under the reaction conditions. The BOC-MP calculation on the elementary reaction steps over Ni(111) surface indicates that the direct dissociation of CH4 without the involvement of surface oxygen is more likely to occur and the formation of CO from CH(s) occurs more readily than from C(s).  相似文献   

2.
Partial oxidation of methane (POM) to make syngas has been largely studied in recent years because of its potential to reduce the cost of syngas. Two reaction schemes have been proposed for the reaction:one is the sequence of combustion of CH4 followed by reforming of unconverted CH4 with CO2 and H2O,and the other is the direct partial oxidation of CH4 to CO and H2 without the experience of CO2 and H2O as reaction intermediates. In the industrial process, if the combustion-reforming mechanism predominantly contributes to the conversion of methane to syngas, severe heat management problems have to be taken into account. Therefore, the elucidation of the reaction pathway is of vital importance. In this paper, in situ time-resolved FTIR (in situ TR-FTIR) spectroscopy was used to study the POM reaction over lwt%Pd/SiO2. The results of catalytic performance evaluation on the POM reaction over lwt%Pd/SiO2 under different space velocity are also presented. It is expected that the additional proof can be presented to interpret POM mechanism.  相似文献   

3.
以TiO2纳米粒子为载体, 采用等体积浸渍法制备了Cu-Co双金属催化剂, 考察了不同Cu/Co质量比和不同Cu-Co含量的双金属催化剂对CH4-合成气梯阶转化直接合成C2+含氧化合物的影响. 在连续式步阶固定床反应装置上进行了催化性能评价. 实验结果表明, 当Cu-Co含量为18%, Cu/Co质量比为2: 1时, Cu-Co/TiO2的C2+含氧化合物产物的时空收率最大, 为19.92 mg·gcat-1·h-1, 选择性为67.76%. 研究表明, 金属组分之间和载体与金属组分之间的相互作用、 金属组分良好的分散性和还原性是促进活性位的形成和提高催化剂活性的原因; 催化剂表面高度分散的CuO微晶有利于催化加氢和脱氢反应的进行, 对CH4-合成气转化反应有重要的促进作用. 另外, 弱酸和中强酸有利于CH4-合成气转化反应, 而强酸对该反应有抑制作用.  相似文献   

4.
烯烃是重要的化工原料,目前主要通过石油催化裂化得到.随着石油资源的消耗以及人们对烯烃需求的日益增长,开发非石油路线制取烯烃势在必行.合成气可以从煤、天然气和生物质等获得,由合成气作为重要的C1平台分子一步制取烯烃(STO)的过程受到了广泛关注.将合成气制甲醇/二甲醚的金属催化剂与甲醇制烯烃的分子筛催化剂耦合得到的混合双...  相似文献   

5.
The hydroboration of allyl sulfonamides (4-H3CC6H4SO2NRCH2CH=CH2: R=H, 1; Ph, 2; Bz, 3) with catecholborane (HBcat) using different rhodium catalysts has been examined using multinuclear NMR spectroscopy. Reactions give complex product distributions, regardless of the choice of catalyst, arising from a competing isomerization reaction. This isomerization reaction can be used with N-substituted allyl sulfonamides 2 and 3 to give the corresponding enamines (4-H3CC6H4SO2CH=CH2CH3), which in turn react with HBcat to give regioselective formation of one isomer (4-H3CC6H4SO2NRCH2CH2(Bcat)CH3).  相似文献   

6.
1-Buten-3-yl-n-butyldichlorotin, generated in situ by redistribution of (E/Z)-2-butenyltri-n-butyltin and BuSnCl3, reacts readily with neat RCHO (R = CH3, C2H5, (CH3)2CH) at 25°C to give linear alcohols RCH(OH)CH2CH---CHCH3 and/or 2,3,4,6-tetrasubstituted tetrahydropyrans, CH2CH(R)OCH(R)CH(CH3)CH-(Cl), which are mainly in the cis-configuration with respect to the CH(CH3)-CH(Cl) bond. When R = (CH3)3C and C6H5, only the homoallylic alcohols are obtained. These cis-stereoconvergent syntheses are explained in terms of kinetic control of the formation of adducts obtained by insertion of one or two aldehyde molecules into the organotin substrate.  相似文献   

7.
用密度泛函理论(DFT)的B3LYP方法,在6-311G、6-311+G(d)、6-311++G(d, p) 基组水平上研究了CH3CF2O2与HO2自由基反应机理. 结果表明, CH3CF2O2与HO2自由基反应存在两条可行的通道. 通道CH3CF2O2+HO2→IM1→TS1→CH3CF2OOH+O2的活化能为77.21 kJ•mol-1,活化能较低,为主要反应通道,其产物是O2和CH3CF2OOH. 这与实验结果是一致的;而通道CH3CF2O2+HO2→IM2→TS2→IM3→TS3→IM4+IM5→IM4+TS4→IM4+OH+O2→TS5+OH+O2→CH3+CF2O+OH+O2→CH3OH+CF2O+O2的控制步骤活化能为93.42 kJ•mol-1,其产物是CH3OH、CF2O和O2. 结果表明这条通道也能发生,这与前人的实验结果一致.  相似文献   

8.
The matrix isolation technique has been combined with infrared spectroscopy and theoretical calculations to identify and characterize the initial and secondary products in the thermal and photochemical reactions of OVCl3 with (CH3)2CO. Initial deposition into argon matrices at 14 K led to the formation, in high yield, of the 1:1 molecular complex. This species appears to be strongly bound, leading to large shifts to certain vibrational modes of both the acid and base subunits. Bands due to the complex were destroyed by near-UV irradiation (λ>300 nm), and led to the formation of intense product bands. In contrast to previous studies, HCl elimination from an initial complex was not observed. Many possible products were considered, including isomerization, decomposition, addition, and addition followed by fragmentation pathways. The products were identified by the use of isotopic labeling and comparison to theoretical calculations. The primary product was determined to be Cl3V(CH3)OC(O)CH3, formed through rupture of a C–C bond in (CH3)2CO and addition of the two fragments to OVCl3. Possible evidence for a second isomer, slightly higher in energy (Cl3V(OCH3)(C(O)CH3)) was also found.  相似文献   

9.
随着工业化的推进,化石能源的消耗产生大量温室气体,其中CH4和CO2占据温室气体排放的98%以上。将CH4和CO2转化为高附加值化学品具有重要的意义,一直受到工业界和学术界广泛关注。传统的热催化甲烷干重整(DRM)可实现将CH4和CO2转化为合成气,但该反应过程受热力学限制,需要很高的能量输入,并且由于反应温度较高,催化剂易发生积碳而失活。绿色环保的光催化技术可以使甲烷干重整反应在温和条件下进行,但是存在太阳光利用率和反应转化率较低等问题。最近光热协同催化受到学术界广泛关注。许多研究结果表明,在相对温和的条件下,光热催化DRM可以获得良好的催化效果,可有效实现太阳能转化为化学能。本文简要介绍近期光热催化甲烷干重整反应的研究进展,总结不同金属催化剂在光热催化甲烷干重整中的应用,同时提出了光热催化甲烷干重整存在的一些挑战及展望。  相似文献   

10.
Reaction of ansa-cyclopentadienyl pyrrolyl ligand (C5H5)CH2(2-C4H3NH) (2) with Ti(NMe2)4 affords bis(dimethylamido)titanium complex [(η5-C5H4)CH2(2-C4H3N)]Ti(NMe2)2 (3) via amine elimination. A cyclopentadiene ligand with two pendant pyrrolyl arms, a mixture of 1,3- and 1,4-{CH2(2-C4H3NH)}2C5H4 (4), undergoes an analogous reaction with Ti(NMe2)4 to give [1,3-{CH2(2-C4H3N)}25-C5H3)]Ti(NMe2) (5). Molecular structures of 3 and 5 have been determined by single crystal X-ray diffraction studies.  相似文献   

11.
Isomerization of phenyl-substituted propargylplatinum(II) complex, trans-Pt(CH2CCPh)(Cl)(PPh3)2 (1) to allenyl complex, trans-Pt(CPh=C=CH2)(Cl)(PPh3)2 (2) was found to be catalyzed by zerovalent complex Pd(PPh3)4. The reaction was proposed to proceed through the transfer of the propargyl/allenyl ligand both from Pt(II) to Pd(0) and Pd(II) to Pt(0). The former transfer, which seemingly has a thermodynamic disadvantage, has unambiguously been confirmed to take place; treatment of 1 with Pd(PPh3)4 or a mixture of Pd2(dba)3 and PPh3 resulted in the formation of Pd(I) complex, Pd2(μ-PhCCCH2)(μ-Cl)(PPh3)2 which lies in equilibrium with a mixture of propargyl/allenylpalladium(II) and Pd(0) complexes.  相似文献   

12.
Two organogold derivatives of diphenylmethane and diphenylethane, Ph3PAu(o-C6H4)CH2(C6H4-o)AuPPh3 (1) and Ph3PAu(o-C6H4)(CH2)2(C6H4-o)AuPPh3 (2), have been synthesized by the reaction of ClAuPPh3 with Li(o-C6H4)CH2(C6H4-o)Li and Li(o-C6H4)(CH2)2(C6H4-o)Li respectively. The interaction of 1 with dppe results in the replacement of the two PPh3 groups to give a macrocyclic compound (3) that includes an Au Au bond. Compounds 1 and 2 react with one or two equivalents of [Ph3PAu]BF4 to form new types of cationic complex [CH2(C6H4-o)2(AuPPh3)3]BF4 (4), [CH2(C6H4-o)2(AuPPh3)4](BF4)2 (5), and [(CH2)2(C6H4-o)2(AuPPh3)4](BF4)2 (6). Complexes 1–6 have been characterized by X-ray diffraction studies, FAB MS, and IR as well as by 1H and 31P NMR spectroscopy. A complicated system of Au H-C agostic interactions, involving the bridging alkyl groups (—CH2— and CH2-CH2—) of diphenylmethane and diphenylethane ligands, has been found to occur in complexes 1–3 and 6.  相似文献   

13.
The reactivity of atomic metal cations toward CH4 has been extensively investigated over the past decades. Closed-shell metal cations in electronically ground states are usually inert with CH4 under thermal collision conditions because of the extremely high stability of methane. With the elevation of collision energies, closed-shell atomic gold cations (Au+) have been reported to react with CH4 under single-collision conditions to produce AuCH2+, AuH+, and AuCH3+ species. Further investigations found that the ion-source-generated AuCH2+ cations can react with CH4 to synthesize C―C coupling products. These previous studies suggested that new products for the reaction of Au+ with CH4 can be identified under multiple-collision conditions with sufficient collision energies. However, the reported ion-molecule reactions involving methane were usually performed under single- or multiple-collision conditions with thermal collision energies. In this study, a new reactor composed of a drift tube and ion funnel is constructed and coupled with a homemade reflectron time-of-flight mass spectrometer. Laser-ablation-generated Au+ ions are injected into the reactor and drift 120 mm to react with methane seeded in the helium drift gas. The reaction products and unreacted Au+ ions are focused through the ion funnel and accumulate through a linear ion trap and are then detected by a mass spectrometer. In the reactor, the pressure is approximately 100 Pa, and the electric field between the drift tube and ion funnel can regulate the collision energies between ions and molecules. The reaction of the closed-shell atomic Au+ cation with CH4 is investigated, and the C―C coupling product AuC2H4+ is observed under multiple-collision conditions with elevated collision energies. Density functional theory calculations are performed to understand the mechanism of the coupling reaction (Au++ 2CH4 → AuC2H4+ + 2H2). Two pathways involving Au―CH2 and Au―CH3 species can separately mediate the C―C coupling process. The activation of the second C―H bond in each process requires additional energy to overcome the relatively high barrier (2.07 and 2.29 eV). Ion-trajectory simulations under multiple-collision conditions are then conducted to determine the collisional energy distribution in the reactor. These simulations confirmed that the electric fields between the drift tube and ion funnel could supply sufficient center-of-mass kinetic energies to facilitate the C―C coupling process to form AuC2H4+. The following catalytic cycle could then be postulated: $\mathrm{AuC}_{2} \mathrm{H}_{4}^{+}+\mathrm{CH}_{4} \stackrel{\Delta}{\longrightarrow} \mathrm{AuCH}_{4}^{+}+\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{AuCH}_{4}^{+}+\mathrm{CH}_{4} \stackrel{\Delta}{\longrightarrow} \mathrm{AuC}_{2} \mathrm{H}_{4}^{+}+2 \mathrm{H}_{2}$, and $\mathrm{CH}_{4} \stackrel{\mathrm{Au}^{+}, \Delta}{\longrightarrow} \mathrm{C}_{2} \mathrm{H}_{4}+2 \mathrm{H}_{2}$. Thus, this study enriches the chemistry of both gold and methane.  相似文献   

14.
Mixed ketoiminate/ketoimine/pentamethylcyclopentadienyl (Cp*) complex of zirconium, [(η5-Cp*){CH3C(O)CHC(NHR)CH3}{CH3C(O)CHC(NR)CH3}ZrCl2] (R=4-CF3Ph) (3) has been prepared in high yield by the reaction of one equivalent of 4-CF3-phenyl-β-ketoimine (1a) and one equivalent of lithium 4-CF3-phenyl-β-ketoiminate (2a) with one equivalent of Cp*ZrCl3 in Et2O. Bis(ketoiminate)zirconium dichloride complexes, 4 and 6, have been also prepared in high yield by the reaction of amine elimination of ketoimine ligands, respectively 1a and 1b, with Zr(NMe2)4 and followed by chlorination reaction with TMSCl. The X-ray crystallography reveals that the compound 3 is based on distorted octahedral geometry containing a ketoimine and a ketoiminate. The ketoiminate ligand coordinates to the zirconium as a bidentate ligand, leaving the metal center coordinatively unsaturated and thus leading to an additional binding of a ketoimine ligand to the metal to stabilize the complex 3. The zirconium complexes 3, 4 and 6 provide the moderate activity for the polymerization of ethylene in the presence of MMAO cocatalyst. Low molecular weight and high density polyethylene was obtained.  相似文献   

15.
以Al2O3为惰性载体,利用共沉淀法制备了CeO2-Fe2O3-Al2O3复合载氧体,并对载氧体进行了XRD、SEM表征。在固定床反应器中,考察了程序升温、恒温、多循环等操作条件下,载氧体对甲烷部分氧化重整的反应性能。程序升温实验结果表明,在相同温度下,CeO2含量为30%的载氧体与不含CeO2的载氧体对比,CH4转化率、H2和CO选择性均提高。在恒温实验中,含有CeO2的两种载氧体,CH4转化率、H2和CO选择性上也都明显高于不含CeO2的载氧体,当反应时间小于1 200 s时,无积炭发生。三种载氧体经过15次循环后,CeO2含量为30%的载氧体表现出最佳的循环特性。多循环实验中,当反应温度850 ℃、反应时间945 s时,CH4最大转化率达到91.53%、H2的最大选择性达到86.36%、CO的最大选择性达到85.12%、H2与CO的最佳平均物质的量比为2.03。XRD谱图显示,经过多次循环后,三种载氧体的物相没有发生变化,载氧体表现出了很好的稳定性能。  相似文献   

16.
采用等体积浸渍法制备了MgO改性的一系列Mg-Ni/BaTiO3催化剂,并在固定床反应装置上考察了这些催化剂对CO2重整CH4反应的催化活性。结果表明,MgO质量负载为5%的Mg-Ni/BaTiO3催化剂活性最好。考察了不同浸渍顺序对催化剂性能的影响,结果表明,先浸镁盐后浸镍盐制得的催化剂催化性能更为理想。XRD、TPR和TPD表征发现,与催化剂Ni/BaTiO3相比,MgO的添加有利于提高催化剂的催化活性和抗积炭性能,对催化剂起到了良好的改性作用。  相似文献   

17.
Treatment of the dimer complex [C5Me5 (CO)2 Ru]2 (1) with HBF4 in CH2Cl2 at room temperature yields the hydrido-bridged dinuclear complex [(C5Me5)2Ru2(CO)4H]BF4 (2), and after refluxing in propionic anhydride [C5Me5(CO)3Ru]BF4 (5) is obtained, UV-irradiation of 1 in the presence of H2CHal2 (Hal = Cl, I) or trimethylphosphine leads to the formation of C5Me5(CO)2Ru-Hal (3a, 3b) or C5Me5(CO)(Me3P)RuH (4) respectively. Exchange reactions of 3a, 3b with LiAlH4, NaOMe and Me3 P give the complexes C5Me5(CO)2RuX (6a,6b) (X=H, OMe), C5Me5(CO)(Me3P)Ru-Hal (7a,7b) (Hal = Cl, I) and C5Me5(Me3P)2RuI (8). The interaction of 3b or 5 with Me3P=CH2 leads to the formation of the ylide complex [C5Me5(CO)(Me3P)-RuCH2PMe3)Cl (9) or the rutheniumacyl-ylide C5Me5(CO)2RuC(O)CH=PMe3 (10). 4 reacts with Me3P=CH2 to give C5Me5(CO)(Me3P)RuMe (11) and Me3P via the intermediate formation of the phosphonium salt Me4P[Ru(CO) (Me3P)-C5Me5].  相似文献   

18.
Reactions of -, β- and γ-hydrogen elimination in cyclopentadienylnickel compounds formed in the reactions of nickelocene with lithium or magnesium compounds are discussed. Elimination of -hydrogen from CpNiR where R is CH3, CH2C(CH3)3, CH2Si(CH3)3, CH2Ph or CH=C(CH3)2 leads to the formation of trinickel clusters (CpNi)3CR′, bis(cyclopentadienyl)(μ-cyclopentadiene)dinickel and (η5-cyclopentadienyl)(η3-cyclopenteny)nickel. β-hydrogen and γ-hydrogen elimination in vinylnickel compounds not possesing -hydrogen have been studied. Elimination and transfer of hydrogen forms (η3-allyl)(η5-cyclopentadienyl)nickel compounds. The mechanisms of these reactions are discussed.  相似文献   

19.
The mechanism and kinetics for the reaction of propene(CH3CH=CH2) molecule with O(1D) atom were investigated theoretically. The electronic structure information of the potential energy surface(PES) was obtained at the B3LYP/6-311+G(d,p) level, and the single-point energies were refined by the multi-level MCG3-MPWB method. The calculated results show that O(1D) atom can attack CH3CH=CH2 via the barrierless insertion mechanism to form four energy-riched intermediates CH3C(OH)CH2(IM1), CH3CHCHOH(IM2), CH2OHCHCH2(IM3) and cyclo- CH2OCHCH3(IM4), respectively, on the singlet PES. The branching ratios as well as the pressure- and temperaturedependence of various product channels for this multi-well reaction were predicted by variational transition-state and Rice-Ramsperger-Kassel-Marcus(RRKM) theories. The present results will be useful to gain a deep insight into the reaction mechanism and kinetics of CH3CH=CH2+O(1D) reaction.  相似文献   

20.
本文通过BnHn2-(n=10,12)及B3H8-盐分别与C5H5FeC5H4CH2N(R)Me2Cl和Fe(C5H4CH2N(R)Me2Cl)2(R=CH3-,C2H5-,n-C3H7-,CH2=CH-CH2-和CH≡C-CH2-)在水溶液中进行反应,合成了相应的三十个新的硼烷阴离子衍生物,这些化合物对水稳定性好,B10H102-及B12H122-衍生物对热、酸、碱和氧化剂均很稳定。研究了反应物之间的用量比例对反应产物的影响。实验结果表明,不论反应物之间的克分子比如何变化,只能得到相应的一种产物(产率90-98%)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号