首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Thermoanalysis study has been carried out on the complex of bis[1-(2-thienyl)-4,4,4-trifluoro-butanedione- 1,3]copper(Ⅱ) and its adducts with pyridine, 2,2′-bipyridine, quinoline and dimethyl sulfoxide in a dynamic ni-trogen atmosphere by simultaneous TG-DTG-DSC technique. The experimental results showed that the decomposi-tion modes of the solvent molecules were various according to the different structures of the complex, in general, the decomposition of them was ahead of the decomposition of the ligand 1-(2-thienyl)-4,4,4-triflurobu- tanedione-1,3. Among them the adduct with 2,2-bipyridine showed a quite unique thermal behavior. Several methods have been jointly used to study the kinetics of all the thermal decomposition stages for title compounds, which showed that the evolution of the solvent molecules was controlled mainly by Rn mechanism (or Am mechanism for 2,2-bipyridine adduct) with lower activation energy; while the release of 1-(2-thienyl)-4,4,4-trifluro-butane- dione-1,3 was gove- rned by D2 or D3 mode with higher activation energy.  相似文献   

2.
3, 3-Dimethyl-1-(1,2,4-triazol)-2-butanone was treated with aqueous formaldehyde to give an additional product, and subsequent elimination by acetic anhydride yielded 4,4-dimethyl-2-(1,2,4-triazol)-1-penten-3-one. Further addition with substituted amines provideda series of (1,2,4-triazol)-4,4-dimethyl-3-pentanone, which were then reduced by KBH4 to obtaina series of (1,2,4-triazol)-4,4-dimethyl-3-pentanol. Their structures were confirmed by ^1HNMR and elemental analysis. The results of bioassay showed that the title products possess good fungicidal activities.  相似文献   

3.
The thermal behaviors of clusters [Ag3WS3Br](PPh3)3 and [Cu3WS3Br](PPh3)3 (PPh3=triphenyl phosphine) in a nitrogen atmosphere were studied under the non-isothermal conditions by simultaneous TG-DTG-DSC and EDS techniques. The results showed that the evolution of PPh3 generally proceeded before the release of the other moiety in one or two step-mode. The mechanisms, the kinetic and the thermodynamic parameters for decomposition of PPh3 of both clusters were determined and calculated by jointly using several methods, which showed that its evolution was controlled by Avrami-Erofeev equation. The results also showed that there was no new stable phase composed of W-Ag(Cu)-S-Br after release of organic moiety PPh3 and that CVD method was not applicable to their further processing.  相似文献   

4.
In order to continue our studies on the synthesis, properties and coordination of s-tetrazine, 3,6-di-(pyridin-3-yl)-s-tetrazine (II, 3-dptz) was synthesized and characterized by 1H- NMR, MS and IR spectra. And the coordination reaction of 3-dptz with nitrate of Cu(II) was studied. 3-dptz reacting with CuII salt [Cu(NO3)2·2H2O] generates a new salt, nitrate of 2,5-di-(pyridin-3- yl)-1,3,4-oxadiazolene (III). III was determined by IR spectra and single-crystal X-ray diffraction to give the following crystal data: space group P21/c, a = 4.9112(1), b = 8.4101(3), c = 29.499(1) , β = 93.266(2)o, V = 1216.44(7) nm3, Mr = 287.24, Z = 4, Dc = 1.568 g/cm3,μ= 0.122 mm-1, F(000) = 592, R = 0.0430 and wR = 0.1240. The results show that III is composed of one cation and one nitrate anion. The cation consists of one H+ and one 2,5-di-(pyridin-3-yl)-1,3,4-oxadiazol molecule, with the former being attached to the latter via electrovalent bond with N3 atom. And the O(42) atom in the nitrate anion is disordered. Intra- and intermolecular H-bonds are observed in the crystal of the title compound. The mechanism of metal-assisted decomposition was also discussed briefly.  相似文献   

5.
曹迁永甘欣  傅文甫 《中国化学》2004,22(11):1283-1287
The mono- and binuclear Cu(Ⅰ) complexes with substituted 2,2′-bipyridine and iodide ligands, [CuL2]BF4(L=4-methoxycarbonyl-6-(4-methylphenyl)-2,2′-bipyridine (a), 6-(4-hydroxymethylphenyl)-2,2′-bipyridine (b) and 6-(4-methoxylphenyl)-2,2′-bipyridine (c)) and [Cu2(μ-I)2L2] were prepared, and the crystal structures of the complexes were obtained from signal-crystal X-ray diffractional analysis. The spectroscopic properties of the complexes in dichloromethane are dominated by low energy MLCT bands from 360 to 650 nrn. The electrochemical studies of mononuclear complexes reveal that the complexes have stable copper(Ⅰ) state.  相似文献   

6.
Cis-dioxo-metal complex ( NH3CH2CH2NH2 ) 2.5 [ Mo0.5^(V)W0.5^(VI)O2 ( OC6H4O ) 2] 1 was obtained by the reaction of tetra-butyl ammonium hexamolybdotungstate with 1, 2-dihydroxybenzene in the mixed solvent of CH3OH, CH3CN and ethylenediamine,and characterized by X-ray diffraction, UV-vis and EPR analysis. Compared with its analogous complexes (NH3CH2CH2NH2)3[Mo^(V)O2(OC6H40)2] 2 and (NH3CH2CH2NH2)2[W^(VI)O2(OC6H4O)2] 3, the results show that tungsten(VI) is less active in redox than molybdenum (VI) and that the change of the valence induced by substitution of W(VI) for Mo(V) in EMO2(OC6H40)2]n- does not influence the coordination geometry of the complex anion in which the metal center exhibits distorted octahedral coordination with cis-dioxo catechol. The responses to EPR of complexes 1 and 2 are active but complex 3 is silent,and the UV-vis spectra exhibited by the three complexes are obvious different because of the different electronic configuration between the central Mo(V) and W(VI) ions in the complexes.It is noteworthy that complexes 1 and 2 have the similar EPR signal to flavoenzyme, suggesting that the three complexes have the same coordination geometry feature with the co-factor of flavoenzyme.  相似文献   

7.
A dinuclear copper(Ⅱ) complex[Cu2(TATP)2(L-Leu)2(CIO4)2]2·2H2Owas synthesized and characterized, where, TATP=1,4,8,9-tetraazatriphenylene, and L-Leu=L-leucinate. The complex was crystallized in the triclinic space group P1, with two independent molecules in a unit cell. Two Cu(Ⅱ) ions in each complex [Cu2(TATP)2(L-Leu)2(CIO4)2] molecule were found to be in different coordination geometries, i.e., Cu2 or Cu4 of a distorted square-pyramidal geometry coordinated with two nitrogens of TATP, the amino nitrogen and one carboxylate oxygen of L-Leu and one oxygen of perchlorate, and Cul or Cu3 with an octahedral geometry coordinated with the above stated similar coordinated atoms, and another carboxylate oxygen of L-Leu coordinating to Cu2 or Cu4. The complex can interact with CT-DNA by an intercalative mode and cleave pBR322 DNA in the presence of ascorbate.  相似文献   

8.
(Z)-1-[2-(Tri-o-tolylstannyl)vinyl]-1-indanol (1) and (Z)-1-[2-(tri-p-tolylstannyl)vinyl]-l-indanol (2) were synthesized by the addition reaction of 1-ethynylindanol with tri-o-tolyltin and tri-p-tolyltin hydride. The aryl groups in compound 1 and 2 were substituted by Br2 or I2 to yield monohalide derivatives (3-6). The compounds 1-6 were characterized by elemental analysis, ^1H NMR and FT-IR spectroscopy. The crystal structures of 1, 2 and 4 have been determined by single crystal X-ray diffraction analysis. The Sn atom in 1 and 2 exhibits a tetrahedral geometry distorted towards trigonal bipyramid due to a weak intramolecular interaction between Sn and the hydroxyl O atoms [0.2839(4) nm and 0.2744(5) nm], while the Sn atom in 4 adopts a trigonal bipyramidal geometry with a significant O→Sn(1) interaction [0.2552(5) nm].  相似文献   

9.
Mn(bzimpy)2(1)[bzimpy=2,6-bis(benzimidazol-2-yl)pyridine],a mononuclear manganese(Ⅱ)complex,was synthesized by the reaction of Mn(OOCMe)2 with bzimpy in absolute ethanol.The complex was structurally characterized by elemental analysis,cyclic voltammetry,and X-ray crystallography.In the complex,the manganese-nitrogen distances were different,and the geometry and the metal ion environment showed the distortion.The cyclic voltammetric measurements have been performed to assess its redox characteristics.The presence of oxidation wave at 0.62V and 0.081V vs.SCE or 0.8V and 1.0v vs.NHE suggested that this complex could catalyze the oxidation of water,therefore,simulate the water-oxidizing complex(WOC) of photosystem Ⅱ (PS Ⅱ).The measurements of photoreduction of 2,6-dichlorophenolindophenol (DCPIP),and oxygen evolution in the manganess-depleted and the comples 1-reconstituted PS Ⅱ preparations just support our conjecture.  相似文献   

10.
A novel triazole derivative 4-(2-hydrobenzylideneamino)-3-(1,2,4-triazol-4-ylmethyl)-1H-1,2,4-triazole-5(4H)-thione(1) was synthesized and characterized using elemental analysis, FTIR, and 1H NMR, and its crystal structure was determined via X-ray single crystal diffraction analysis. Crystal data: monoclinic, P2(1)/c, a=0.83335(9) nm, b=1.49777(16) nm, c=1.14724(12) nm, β =107.990(2)°, D=1.470 Mg/m3, and Z=4. The geometries and the vibrational frequencies were determined using the density functional theory(DFT) method at the B3LYP/ 6-31G level. To demonstrate the accuracy of the reaction route of compound 1, one of the important intermediates was also tested using the same method. The structural parameters of the two compounds calculated using the DFT study are close to those of the crystals, and the harmonic vibrations of the two compounds computed via the DFT method are in good agreement with those in the observed IR spectral data. The thermodynamic properties of the title compound were calculated, and the compound shows a good structural stability at normal temperature. The test results of biological activities show that it has a certain bactericidal ability.  相似文献   

11.
Introduction N-1-Alkyl-substituted 1,2,4-triazole compounds, like some other heterocyclic derivatives containing nitrogen, have recently been the subjects of numerous studies due to their fungicidal action1 and plant growth regulation.2 Among them, the complexes with a sort of triazole as ligand are of considerable interest because of their broad-spectrum bioactivity, coordination and photo-chemical properties, as well as many potential applica-tions in various fields.3,4 In our previous paper…  相似文献   

12.
1‐tert‐Butyl‐1H‐1,2,4‐triazole (tbtr) was found to react with copper(II) chloride or bromide to give the complexes [Cu(tbtr)2X2]n and [Cu(tbtr)4X2] (X = Cl, Br). 1‐tert‐Butyl‐1H‐tetrazole (tbtt) reacts with copper(II) bromide resulting in the formation of the complex [Cu3(tbtt)6Br6]. The obtained crystalline complexes as well as free ligand tbtr were characterized by elemental analysis, IR spectroscopy, thermal and X‐ray analyses. For free ligand tbtr, 1H NMR and 13C NMR spectra were also recorded. In all the complexes, tbtr and tbtt act as monodentate ligands coordinated by CuII cations via the heteroring N4 atoms. The triazole complexes [Cu(tbtr)2Cl2]n and [Cu(tbtr)2Br2]n are isotypic, being 1D coordination polymers, formed at the expense of single halide bridges between neighboring copper(II) cations. The isotypic complexes [Cu(tbtr)4Cl2] and [Cu(tbtr)4Br2] reveal mononuclear centrosymmetric structure, with octahedral coordination of CuII cations. The tetrazole compound [Cu3(tbtt)6Br6] is a linear trinuclear complex, in which neighboring copper(II) cations are linked by single bromide bridges.  相似文献   

13.
Copper(I) halides with triphenyl phosphine and imidaozlidine‐2‐thiones (L ‐NMe, L ‐NEt, and L ‐NPh) in acetonitrile/methanol (or dichloromethane) yielded copper(I) mixed‐ligand complexes: mononuclear, namely, [CuCl(κ1‐S‐L ‐NMe)(PPh3)2] ( 1 ), [CuBr(κ1‐S‐L ‐NMe)(PPh3)2] ( 2 ), [CuBr(κ1‐S‐L ‐NEt)(PPh3)2] ( 5 ), [CuI(κ1‐S‐L ‐NEt)(PPh3)2] ( 6 ), [CuCl(κ1‐S‐L ‐NPh)(PPh3)2] ( 7 ), and [CuBr(κ1‐S‐L ‐NPh)(PPh3)2] ( 8 ), and dinuclear, [Cu21‐I)2(μ‐S‐L ‐NMe)2(PPh3)2] ( 3 ) and [Cu2(μ‐Cl)21‐S‐L ‐NEt)2(PPh3)2] ( 4 ). All complexes were characterized with analytical data, IR and NMR spectroscopy, and X‐ray crystallography. Complexes 2 – 4 , 7 , and 8 each formed crystals in the triclinic system with P$\bar{1}$ space group, whereas complexes 1 , 5 , and 6 crystallized in the monoclinic crystal system with space groups P21/c, C2/c, and P21/n, respectively. Complex 2 has shown two independent molecules, [(CuBr(κ1‐S‐L ‐NMe)(PPh3)2] and [CuBr(PPh3)2] in the unit cell. For X = Cl, the thio‐ligand bonded to metal as terminal in complex 4 , whereas for X = I it is sulfur‐bridged in complex 3 .  相似文献   

14.
PbII complexes of 1‐alkyl‐2‐{(o‐thioalkyl)phenylazo}imidazole (SRaaiNR'), [Pb(SRaaiNR')2X2] were characterized by spectroscopic studies. The single‐crystal X‐ray structure of [Pb(SEtaaiNEt)2Cl2] (SEtaaiNEt = 1‐ethyl‐2‐{(o‐thioalkyl)phenylazo}imidazole) proved imidazolyl‐N and –SEt coordination forming unusual puckered eight member chelate rings. UV light irradiation of the complexes in DMF solution shows E‐to‐Z (E and Z refer to trans and cis‐configuration about –N=N–, respectively) photoisomerization of the coordinated azoimidazole. The rate of isomerization follows the sequence: [Pb(SRaaiNR')2Cl2] < [Pb(SRaaiNR')2Br2] < [Pb(SRaaiNR')2I2]. Quantum yields (φE→Z) and the activation energy (Ea) of the isomerization of the complexes are lower than observed for the free ligand. This can be explained by considering the molecular assembly and the thus observed increase in mass and rotor volume of the complexes. DFT and TDDFT calculations of optimized geometry could explained the spectral properties and photochromic activity.  相似文献   

15.
A series of new heteroleptic MN2S2 transition metal complexes with M = Cu2+ for EPR measurements and as diamagnetic hosts Ni2+, Zn2+, and Pd2+ were synthesized and characterized. The ligands are N2 = 4, 4′‐bis(tert‐butyl)‐2, 2′‐bipyridine (tBu2bpy) and S2 =1, 2‐dithiooxalate, (dto), 1, 2‐dithiosquarate, (dtsq), maleonitrile‐1, 2‐dithiolate, or 1, 2‐dicyanoethene‐1, 2‐dithiolate, (mnt). The CuII complexes were studied by EPR in solution and as powders, diamagnetically diluted in the isostructural planar [NiII(tBu2bpy)(S2)] or[PdII(tBu2bpy)(S2)] as well as in tetrahedrally coordinated[ZnII(tBu2bpy)(S2)] host structures to put steric stress on the coordination geometry of the central CuN2S2 unit. The spin density contributions for different geometries calculated from experimental parameters are compared with the electronic situation in the frontier orbital, namely in the semi‐occupied molecular orbital (SOMO) of the copper complex, derived from quantum chemical calculations on different levels (EHT and DFT). One of the hosts, [NiII(tBu2bpy)(mnt)], is characterized by X‐ray structure analysis to prove the coordination geometry. The complex crystallizes in a square‐planar coordination mode in the monoclinic space group P21/a with Z = 4 and the unit cell parameters a = 10.4508(10) Å, b = 18.266(2) Å, c = 12.6566(12) Å, β = 112.095(7)°. Oxidation and reductions potentials of one of the host complexes, [Ni(tBu2bpy)(mnt)], were obtained by cyclovoltammetric measurements.  相似文献   

16.
Two organic–inorganic hybrid compounds have been prepared by the combination of the 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium cation with perhalometallate anions to give 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridocobaltate(II), (C12H12N2)[CoCl4], (I), and 4‐[(E)‐2‐(pyridin‐1‐ium‐2‐yl)ethenyl]pyridinium tetrachloridozincate(II), (C12H12N2)[ZnCl4], (II). The compounds have been structurally characterized by single‐crystal X‐ray diffraction analysis, showing the formation of a three‐dimensional network through X—H...ClnM (X = C, N+; n = 1, 2; M = CoII, ZnII) hydrogen‐bonding interactions and π–π stacking interactions. The title compounds were also characterized by FT–IR spectroscopy and thermogravimetric analysis (TGA).  相似文献   

17.
In the title compound, [Cu(C7H3N2O4)(C4H5N2)(H2O)], (I), pyridine‐2,6‐dicarboxylate (pydc2−), 2‐aminopyrimidine and aqua ligands coordinate the CuII centre through two N atoms, two carboxylate O atoms and one water O atom, respectively, to give a nominally distorted square‐pyramidal coordination geometry, a common arrangement for copper complexes containing the pydc2− ligand. Because of the presence of Cu...Xbridged contacts (X = N or O) between adjacent molecules in the crystal structures of (I) and three analogous previously reported compounds, and the corresponding uncertainty about the effective coordination number of the CuII centre, density functional theory (DFT) calculations were used to elucidate the degree of covalency in these contacts. The calculated Wiberg and Mayer bond‐order indices reveal that the Cu...O contact can be considered as a coordination bond, whereas the amine group forming a Cu...N contact is not an effective participant in the coordination environment.  相似文献   

18.
The title compound was prepared by reaction of N, N‐dimethyldithiocarbamate sodium with l‐bromo‐l‐(4‐methoxyphenylcarbonyl)‐2‐(1, 2, 4‐triazole‐l‐yl) ethane. Its crystal structure has been determined by X‐ray diffraction analysis. The crystal belongs to triclinic with space group Pī, a = 0.7339(2) nm, b = 1.1032(2) nm, c = 1.1203(2) nm, a = 90.27(3)°, β = 102.03(3)°, γ = 104.91(3)°, Z=2, V = 0.8556(3) nm3, Dc = 1.360 g/cm3, μ =0.325 mm?1, F(000)=368, final R1 =0.0475. The planes of 4‐methoxybenzyl group and triazole ring are nearly perpendicular to each other. The dihedral angle is 83.97°. There is an obvious π‐π stacking interaction between the molecules in the crystal lattice. The results of biological test show that the title compound has fungicidal and plant growth regulating activities.  相似文献   

19.
Monocyclopentadienyl titanium imidazolin‐2‐iminato complexes [Cp′Ti(L)X2] 1a (Cp′ = cyclopentadienyl, L = 1,3‐di‐tert‐butylimidazolin‐2‐imide, X = Cl), 1b (X = CH3); 2 (Cp′ = cyclopentadienyl, L = 1,3‐diisopropylimidazolin‐2‐imide, X = Cl); 3 (Cp′ = tert‐butylcyclopentadienyl, L = 1,3‐di‐tert‐butylimidazolin‐2‐imide, X = Cl), upon activation with methylaluminoxane (MAO) were active for the polymerization of ethylene and propylene and the copolymerization of ethylene and 1‐hexene. Catalysts derived from imidazolin‐2‐iminato tropidinyl titanium complex 4 = [(Trop)Ti(L)Cl2] (Trop = tropidinyl, L = 1,3‐di‐tert‐butylimidazolin‐2‐imide) were much less active. Narrow polydispersities were observed for ethylene and propylene polymerization, but the copolymerization of ethylene/hexene led to bimodal molecular weight distributions. The productivity of catalysts derived from the dialkyl complex 1b activated with [Ph3C][B(C6F5)4] or B(C6F5)3 were less active for ethylene/hexene copolymerization but yielded ethylene/hexene copolymers of narrower molecular weight distributions than those derived from 1a/MAO. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6064–6070, 2008  相似文献   

20.
Reactions of the oxorhenium(V) complexes [ReOX3(PPh3)2] (X = Cl, Br) with the N‐heterocyclic carbene (NHC) 1,3,4‐triphenyl‐1,2,4‐triazol‐5‐ylidene (LPh) under mild conditions and in the presence of MeOH or water give [ReOX2(Y)(PPh3)(LPh)] complexes (X = Cl, Br; Y = OMe, OH). Attempted reactions of the carbene precursor 5‐methoxy‐1,3,4‐triphenyl‐4,5‐dihydro‐1H‐1,2,4‐triazole ( 1 ) with [ReOCl3(PPh3)2] or [NBu4][ReOCl4] in boiling xylene resulted in protonation of the intermediately formed carbene and decomposition products such as [HLPh][ReOCl4(OPPh3)], [HLPh][ReOCl4(OH2)] or [HLPh][ReO4] were isolated. The neutral [ReOX2(Y)(PPh3)(HLPh)] complexes are purple, airstable solids. The bulky NHC ligands coordinate monodentate and in cis‐position to PPh3. The relatively long Re–C bond lengths of approximate 2.1Å indicate metal‐carbon single bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号