首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
报道了毛细管电泳多道电化学检测器的研制及其应用,安培检测器和电导检测器并联在同一毛细管电泳检测系统中,在同一缓冲体系,同一工作电极下对同一复杂的分析体系同时进行电导和安培检测;整个装置综合了电导检测和安培检测两种检测器的优点,性能优良,造价低廉,对实际样品的检测取得了令人满意的结果。  相似文献   

2.
阐述了高效毛细管电泳电化学检测器(包括电导、电势和安培检测)的研究现状,重点是检测器的研制及接口的制作技术。对各种电化学检测器的应用情况也进行了总结。展望了高效毛细管电泳电化学检测的发展前景。  相似文献   

3.
毛细管电泳和火焰光度检测器的联用研究   总被引:2,自引:0,他引:2  
袁东星  许鹏翔 《分析化学》1998,26(4):378-382
研究了毛细管电泳与火焰光度检测器的联用技术及其应用。有机磷农药经毛细管电泳分离后,流出液被引入气相色谱的火娄光度检测器进行特效检测,毛细管电泳的接地电极接口采用毛细管裂缝处裹醋酸纤维膜的方法,而毛细管电泳和火焰光度检测器的接口则借用了气相色谱的进样口。  相似文献   

4.
对毛细管电泳的光学检测器作了简要评述。根据所采用的检测原理。光源检测器可分为紫外检测器,激光诱导荧光检测器、化学肆光检测器、荷耦合器件检测器、折射指数检测器等许多种类,具有简单方便、使用广泛,信息量较大等特点,是一类有良好诉检测器。  相似文献   

5.
一种共聚焦激光诱导荧光检测器的研制   总被引:6,自引:0,他引:6  
杨丙成  关亚风  黄威东  车迅 《色谱》2002,20(4):332-334
 基于共聚焦检测,研制了一台便携式激光诱导荧光检测器。该系统具有体积小、重量轻、成本低等特点;成像观察校准系统使日常校准非常简单。采用毛细管电泳和流动注射方式对该体系性能进行了评价,以Cy5染料与Cy5标记的色氨酸作为检测物质,其检测下限为3.7 nmol/L。  相似文献   

6.
本文采用倒置荧光显微镜,以汞灯为激发光源,自行设计组装了芯片毛细管电泳荧光检测系统。以荧光素异硫氰酸酯(FITC)为检测对象,对双通道门控光子计数器、CH151型光子计数探测器、电荷耦合器件(CCD)三种荧光检测器的灵敏度进行了比较研究。根据芯片毛细管电泳图谱分析,FITC在双通道门控光子计数器、CH151型光子计数探测器、CCD三种检测器中的检出限(S/N=3)分别为7.0×10-10mol/L,1.2×10-9mol/L,3.2×10-8mol/L。进一步采用CH151型光子计数探测器和CCD两种较常用检测器,对FITC和荧光素、曙红和荧光素两组荧光试剂的分离及检测进行了研究。结果表明,使用CH151型光子计数探测器作为检测器,灵敏度高,基线稳定,信噪比高。  相似文献   

7.
高效毛细管电泳-电荷耦合器件检测器联用技术研究(Ⅶ)──低聚肽及其降解产物的分离熊少祥,李建军,程介克(武汉大学化学系,武汉,430072)关键词毛细管电泳.电荷耦合器件检测器.荧光检测.联用技术多肽及其降解产物氨基酸是组成生命物质蛋白质的基础,某些...  相似文献   

8.
毛细管电泳和毛细管电色谱技术在农药残留检测中的应用   总被引:7,自引:2,他引:5  
林振宇  黄露  陈国南 《色谱》2009,27(1):9-18
由于毛细管电泳(CE)和毛细管电色谱(CEC)具有所需样品体积小、分离效率高等特点,越来越多的学者已将它们应用到农药残留(简称农残)检测中,并将它们同各种不同的检测器以及样品浓缩方法相结合,以提高检测的灵敏度。本文对CE和CEC两种方法中所涉及的常见的样品预浓缩方法进行了简要的介绍。对各种不同类型的检测器(如紫外检测、荧光检测、电化学检测以及质谱检测等)的优缺点及其在农残检测中的应用情况进行了评述;同时对手性农药的CE和CEC分离检测情况进行了特别介绍;并对CE和CEC在农残分析与检测中的应用前景进行了展望。  相似文献   

9.
毛细管电泳与芯片毛细管电泳的双检测技术   总被引:1,自引:0,他引:1  
综述了毛细管电泳和芯片毛细管电泳的3种双检测技术,包括荧光-散射等光学双检测技术、安培-非接触电导等电化学双检测技术和荧光-非接触电导等光电联用双检测技术.介绍了3种双检测方法的仪器的检测原理及应用,并展望了双检测技术的发展前景.引用文献54篇.  相似文献   

10.
王荣  贾正平  阮金秀  谢华  陈巧云  贾海  张强  徐娟  敖燕 《分析化学》2007,35(8):1137-1141
采用线性聚丙烯酰胺修饰石英毛细管的高效毛细管电泳无胶筛分技术,对原核/真核质粒用不同限制性内切酶酶切,运用限制性内切酶指纹-高效毛细管电泳激光诱导荧光(REF-HPCE-LIF)检测法同时对内切酶酶切后多个和较长DNA片段进行了检测,电泳缓冲液为1×TBE(pH8.3),阴极电压进样(10kV,5s),分离电压13kV,25℃,激光诱导荧光检测器检测(λex=520nm)。结果表明,所建立的REF-HPCE-LIF方法可对原核/真核酶切后多个和较长DNA片段进行检测,获得了满意的限制性内切酶指纹图谱,能够检测片段大小相差不超过10bp。所建立的方法较琼脂糖电泳分辨率高,可应用在检测多个和较长DNA片段的突变,在诊断肿瘤方面有一定应用前景。  相似文献   

11.
Feng-Bo Yang 《Talanta》2009,78(3):1155-203
In this work, a simple and low-cost miniaturized light-emitting diode induced fluorescence (LED-IF) detector based on an orthogonal optical arrangement for capillary electrophoresis (CE) was developed, using a blue concave light-emitting diode (LED) as excitation source and a photodiode as photodetector. A lens obtained from a waste DVD-ROM was used to focus the LED light beam into an ∼80 μm spot. Fluorescence was collected with an ocular obtained from a pen microscope at 45° angle, and passed through a band-pass filter to a photodiode detector. The performance of the LED-IF detector was demonstrated in CE separations using sodium fluorescein and fluorescein isothiocyanate (FITC)-labeled amino acids as model samples. The limit of detection for sodium fluorescein was 0.92 μM with a signal-to-noise ratio (S/N) of 3. The total cost of the LED-IF detector was less than $ 50.  相似文献   

12.
Xu J  Chen S  Xiong Y  Yang B  Guan Y 《Talanta》2008,75(4):885-889
A glycerol assisted light-emitting diode (LED)-induced fluorescence detector (IF) for capillary flow systems was constructed and evaluated. A blue LED was used as the excitation source, and optical fibers (OF) were used to transmit the excitation light and collect the fluorescence. A commercial available 5-port manifold was used as detection cell, where the capillary tube and the OF were fixed into the manifold. The precision of the holes on the manifold ensured a self-alignment of optical path. A refractive index matching fluid (RIMF)-glycerol was used to eliminate the interfaces between the OF and the LED, as well as between the fused silica capillary and the transmitting/collecting fiber. The enhancement of excitation light led to 2.8-folds improvement on the signal-to-noise ratio. The use of RIMF also eliminates focusing effect of the capillary wall and reduces both the excitation light directed to the detection cell and background signal, resulting in reduction in the fluorescence intensity and noise level. The intensity was reduced to 47-63% for laser and 60-77% for LED, respectively, for capillaries with i.d. from 50 to 250 microm; while the noise level was reduced to 1/3 when RIMF was used for both laser and LED on the tested capillaries. About 5.6-fold enhancement in signal-to-noise ratio was obtained in total. The detection limit of the LED-IF for fluorescein isothiocyanate (FITC) was 4 nM. Application of the LED-IF for the analysis of FITC-labeled amino acids by electrophoresis was demonstrated.  相似文献   

13.
Yang B  Tian H  Xu J  Guan Y 《Talanta》2006,69(4):996-1000
An integrated light emitting diode (LED)-induced fluorescence detector was described and evaluated. The LED and its related components including lens and interference filter, the optical fiber used to collect fluorescence, and the capillary column are integrated into a substrate block, which eliminates the need of align procedure of the fiber and the capillary. Forty-fold enhancement of sensitivity was obtained compared with our previous work and the detection limit for fluorescein was 5 nM. Application of the detector for the analysis of FITC-labeled Ephedrine extract was demonstrated.  相似文献   

14.
A miniaturized fluorescence detector utilizing a three-dimensional windowless flow cell has been constructed and evaluated. The inlet and outlet liquid channels are collinear and are located in the same plane as the excitation paths, while the optical fiber used to collect the emission light is perpendicular to this plane. The straightforward arrangement of the flow path minimizes band dispersion and eliminates bubble formation or accumulation inside the cell. The use of high-brightness light-emitting diodes (LEDs) as the excitation source and a miniaturized metal package photomultiplier tube (PMT) results in a compact and sensitive fluorescence detector. The detection limit obtained from the system for fluorescein isothiocyanate (FITC) in flow injection mode is 2.6 nmol/L. The analysis of riboflavin and FITC by packed capillary liquid chromatography is demonstrated.   相似文献   

15.
Yang F  Li XC  Zhang W  Pan JB  Chen ZG 《Talanta》2011,84(4):1155-1106
In this paper, a compact and inexpensive light emitting diode induced fluorescence (LED-IF) detector with simplified optical configuration was developed and assembled in an integrated microfluidic device for microscale electrophoresis. The facile detector mainly consisted of an LED, a focusing pinhole, an emission filter and a photodiode, and was encapsulated in the upper layer of an aluminum alloy device with two layers. At the bottom layer, integrated circuit (IC) was assembled to manipulate the voltage for sample injection and separation, LED emission and signal amplifying. A high-power LED with fan-shaped heat sink was used as excitation source. The excitation light was focused by a 1.1 mm diameter pinhole fabricated in a thin piece of silver foil, and the obtained sensitivity was about 3 times as high as that using electrode plate. Other important parameters including LED driven current, fluorescence collection angle and detection distance have also been investigated. Under optimal conditions, considerable high-response of 0.09 fmol and 0.18 fmol mass detection limits at 0.37 nL injection volume for sodium fluorescein (SF) and FITC was achieved, respectively. This device has been successfully employed to separate penicillamine (PA) enantiomers. Due to such significant features as low-cost, integration, miniaturization, and ease of commercialization, the presented microfluidic device may hold great promise for clinical diagnostics and bioanalytical applications.  相似文献   

16.
A new design of a dual, UV photometric - contactless conductometric detector is described. The separation capillary with an optical window created is pressed onto two semitubular electrodes, 3 mm wide and 2 mm apart. The electrodes form the detection cell of the contactless conductometric detector. An optical fiber, placed in the gap between the conductometric electrodes, brings radiation from the source. The radiation that passes through the separation capillary is recorded by a large-area photodiode. The optical fiber and the photodiode operate the photometric cell which is between the conductometric electrodes. The detector thus permits simultaneous photometric and conductometric detection in the same place of the capillary, while exchanging of the separation capillary is easy and without effect on the detector geometry and performance.  相似文献   

17.
The optical characteristics of on-capillary photometric detectors for capillary electrophoresis were evaluated and five commercial detectors were compared. Plots of sensitivity (absorbance/concentration) versus absorbance obtained with a suitable testing solution yield both the linear range and the effective path length of the detector. The detector linearity is a crucial parameter when using absorbing electrolytes, such as for indirect photometric detection, and especially for highly absorbing electrolyte probe ions. The upper limits of the linear ranges (determined as 5% decline in sensitivity) for five commercial detectors ranged from 0.175 to 1.2 AU. The effective pathlength reflects the quality of the optical design of the detector and is equal to the capillary internal diameter only for a light beam passing exactly through the capillary centre, but becomes progressively shorter for imperfect optical designs. The determined effective pathlength for the five investigated detectors ranged from 49.7 to 64.6 microm for a 75 microm I.D. capillary.  相似文献   

18.
Capillary gel electrophoresis (CGE) in the presence of sodium dodecyl sulfate (SDS) is a well-established and widely used protein analysis technique in the biotechnology industry, and increasingly becoming the method of choice that meets the requirements of the standards of International Conference of Harmonization (ICH). Automated single channel capillary electrophoresis systems are usually equipped with UV absorbance and/or laser-induced fluorescent (LIF) detection options offering general applicability and high detection sensitivity, respectively; however, with limited throughput. This shortcoming is addressed by the use of multicapillary gel electrophoresis (mCGE) systems with LED-induced fluorescent detection (LED-IF), also featuring automation and excellent detection sensitivity, thus widely applicable to rapid and large-scale analysis of biotherapeutics, especially monoclonal antibodies (mAb). The methodology we report in this paper is readily applicable for rapid purity assessment and subunit characterization of IgG molecules including detection of non-glycosylated heavy chains (NGHC) and separation of possible subunit variations such as truncated light chains (Pre-LC) or alternative splice variants. Covalent fluorophore derivatization and the mCGE analysis of the labeled IgG samples with multi-capillary gel electrophoresis are thoroughly described. Reducing and non-reducing conditions were both applied with and without peptide N-glycosidase F mediated deglycosylation.  相似文献   

19.
发光二极管诱导荧光用于毛细管电泳检测   总被引:2,自引:2,他引:2  
杨丙成  谭峰  关亚风 《分析化学》2003,31(9):1066-1068
利用发光二极管作为激发光源,组装了用于毛细管电泳的荧光检测器。光纤用于传输荧光信号;光纤端面修饰成球形使耦合效率比平面端光纤提高了50.8%;光阑、光纤及毛细管检测池之间的光学校准简单、便捷。荧光素染料用于评价该体系性能,得到了fmol的质量检出限。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号