首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
以N-乙烯基吡咯烷酮(NVP)和甲基丙烯酸-N,N-二甲胺乙酯(DMAEMA)为单体,采用自由基聚合法合成了NVP与DMAEMA的共聚物及其水凝胶。研究发现共聚物的水溶液具有温度及pH双重敏感特性。相分离温度随DMAEMA含量的增加和水溶液浓度的降低而升高,随pH值的增大而减小且相变敏锐。通过对水凝胶溶胀率的考察,发现共聚凝胶在适当的单体浓度及交联剂浓度下,有较敏感的溶胀-退胀行为。在碱性条件下,共聚凝胶随温度的升高迅速退胀。pH=9时,改变温度,对辅酶A有很好的控制释放;而在酸性条件下,则无退胀行为,对辅酶A不能释放。  相似文献   

2.
含疏水链节的聚N-异丙基丙烯酰胺共聚物的温敏性   总被引:1,自引:0,他引:1  
采用溶液聚合法合成了一系列N-异丙基丙烯酰胺(NIPAM)与甲基丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯或甲基丙烯酸丁酯的无规共聚物,用浊度观测法和光散射法测定了不同共聚物水溶液的温敏相转变行为.结果表明:所得共聚物的低临界溶解温度(LCST)均低于均聚物PNIPAM的,酯类单体的结构和含量对共聚物的LCST有显著影响,其中酯基上的烷基对共聚物LCST的影响能力大于丙烯酸酯α位上的烷基,前者对增大共聚物的疏水性有更大贡献.通过NIPAM与特定丙烯酸酯单体进行无规共聚可以合成转变温度低于PNIPAM均聚物且具有预设LCST数值的水溶性温敏聚合物.  相似文献   

3.
P(NIPA-co-NVP)温敏性凝胶微粒的药物释放与降解   总被引:1,自引:0,他引:1  
本文采用N-异丙基丙烯酰胺(NIPA)与N-乙烯基吡咯烷酮(NVP),以N,N-亚甲基双丙烯酰胺(MBA)为交联剂,氧化-还原试剂引发,通过反相悬浮共聚制备了微粒状热缩温敏水凝胶;研究了共聚单体配比及交联剂用量对凝胶温敏性能和溶胀性能的影响,并利用其温敏性以水杨酸为模型药物进行了药物吸附-释放实验;利用红外光谱和显微技术对微凝胶的结构和形态进行了表征,并初步探讨了该凝胶降解的可能性。实验发现:NVP单体的加入使共聚凝胶的体积相变温度和平衡溶胀率都明显升高,药物吸附率增加,而溶胀-退溶胀的响应速度及水保留率降低,释药率降低;该凝胶在pH1,37℃条件下能够降解,降解率随单体中NVP含量的增加而增加,随交联剂用量的增加而降低。  相似文献   

4.
利用L-色氨酸(L-Trp)为手性源,经酯化、缩合等反应制备手性单体AAc-L-Trp,进而在交联剂N,N’-亚甲基双丙烯酰胺(MBAA)和引发剂偶氮二异丁腈(AIBN)的作用下,与N-异丙基丙烯酰胺(NIPAM)发生自由基共聚制备了一种可用于手性拆分的新型手性温敏水凝胶Poly(NIPAM-co-AAc-L-Trp),其结构经IR确证.通过对其温敏性研究发现,相比于PNIPAM凝胶,疏水性手性单体的引入使Poly(NIPAM-co-AAc-L-Trp)凝胶的温敏性下降,LCST随着手性单体含量的增加而降低.以DL-苯丙氨酸为模型药物对其手性识别和拆分性能进行研究,结果表明,手性温敏凝胶可选择性地吸附D-型对映体,且吸附量随着手性单体含量增加而增加;提高温度(45°C)有利于手性温敏凝胶对DL-苯丙氨酸的拆分.  相似文献   

5.
合成了含金刚烷基的甲基丙烯酸金刚烷酯(AdMA)疏水单体,并通过与N-异丙基丙烯酰胺(NIPAM)共聚,制备了温敏性的(P(NIPAM-co-AdMA))共聚物水凝胶.用傅里叶变换红外光谱仪(FTIR)表征了凝胶的化学结构,用环境扫描电镜(ESEM)对凝胶断层结构的形貌进行了观察,用DSC测试了凝胶的体积相转变温度(LCST),并研究了共聚水凝胶的溶胀性能.结果表明,共聚物水凝胶的LCST能够高效地通过改变疏水单体的含量来调节,在实验所考察的范围内,LCST随AdMA含量的增加而线性降低;疏水单体的含量对凝胶的孔洞结构和溶胀性能存在一最优值,在最优的单体配比下,水凝胶具有均匀规整的大孔结构和超快的响应速率.如疏水单体含量为3%(AdMA∶NIPAM=3%)的共聚物水凝胶具有如渔网般均匀的多孔结构,当发生去溶胀时,在5min内就可以失去92%的水,不到10min的时间就可以完全达到去溶胀平衡,水保留率在4%以下.  相似文献   

6.
利用原子转移自由基聚合(ATRP)方法合成了组成递变的2-甲基-2-丙烯酸-2-(2-甲氧基乙氧基)乙酯(MEO2MA)与寡聚乙二醇甲醚甲基丙烯酸酯(OEGMA)共聚物P(MEO2MA-co-OEGMA). 核磁共振氢谱(1HNMR)和凝胶渗透色谱(GPC)表征了聚合物的结构、分子量及其分布. 通过测定透光率、粘度、激光粒度分析了共聚物组成对共聚物低临界溶解温度(LCST)的影响, 考察了共聚物组成、浓度、盐浓度、盐种类、温度对其溶液相行为的影响. 结果表明: 所合成的共聚物具有温度敏感性, 其LCST 可以通过合成时共聚单体MEO2MA与OEGMA投料比的改变来调控, 随着OEGMA量的增加共聚物的LCST升高, 共聚物溶液浓度升高其LCST减小, 随盐溶液浓度的增大共聚物的LCST降低, 共聚物的LCST降低主要受盐溶液中阴离子价数的影响; HCl的引入使共聚物水溶液的LCST降低; NaOH的引入使共聚物水溶液的LCST升高.  相似文献   

7.
通过自由基聚合合成了N-异丙基丙烯酰胺(NIPAm)与N-羟甲基丙烯酰胺(NHMPA)的共聚物及其水凝胶。研究发现,调节两单体的配比可得到不同的低临界溶液温度(LCST)值的共聚物及水凝胶。结果表明,NHMPA的加入不改变PNIPAm的温敏性,但可有效的调节其LCST值。  相似文献   

8.
化学交联聚氯乙烯树脂的合成和结构   总被引:2,自引:0,他引:2  
研究了氯乙烯/交联单体悬浮共聚时,交联单体种类、浓度和聚合温度对化学交联聚氯乙烯树脂结构的影响.对于氯乙烯/邻苯二甲酸二烯丙基酯(VC/DAP)悬浮共聚体系,凝胶含量和凝胶交联密度随DAP起始浓度的增加而增大;DAP浓度相同时,凝胶含量和凝胶交联密度随聚合温度上升而下降;当凝胶含量较高时,分子链物理缠结对凝胶交联密度有较大贡献,凝胶交联密度随凝胶含量增加而快速上升.在相同交联单体浓度下,氯乙烯/马来酸二烯丙基酯(VC/DAM)共聚物的凝胶含量最大,VC/DAP共聚物次之,氯乙烯/乙二醇二甲基丙烯酸酯(VC/EGDMA)共聚物最小,这是由于DAM单体的竞聚率小于1,且含有马来酸双键,EGDMA单体的竞聚率远大于1.  相似文献   

9.
以巯基乙胺盐酸盐(AESH)为链转移剂、2,2'-偶氮二异丁腈为引发剂,合成了具有端氨基的聚(N-异丙基丙烯酰胺)(PNIPAAm);与甲基丙烯酰氯反应,得到可聚合的PNIPAAm大分子单体;进而与丙烯腈共聚,合成了丙烯腈-N-异丙基丙烯酰胺接枝共聚物(P(AN-g-NIPAAm)).基于浸没沉淀相转化法制备了聚丙烯腈/P(AN-g-NIPAAm)共混膜.红外及核磁分析表明,通过调控AESH的浓度可制备得到不同链长的PNIPAAm大分子单体;用激光光散射进一步测定了共聚物的重均分子量;采用鼓泡接触角及浊度测定考察了共聚物的温敏特性;XPS结果证实PNIPAAm链在膜表面发生富集;纯水压滤实验发现所制备的分离膜40℃(高于PNIPAAm的LCST)时的水通量是25℃(低于PNIPAAm的LCST)时的近2倍,具有较明显的温敏性.  相似文献   

10.
PLA大分子单体接枝NVP共聚物的合成与性能   总被引:2,自引:0,他引:2  
制备了末端为双键的功能化聚乳酸大分子单体(PLA-HEMA),并以此大分子单体与N-乙烯基吡咯烷酮(NVP)进行自由基溶液共聚,合成了具有亲水性PVP-PHEMA主链和疏水性PLA支链的接枝共聚物。用FT-IR1、H-NMR、GPC、DSC、表面接触角测定研究了共聚物的结构与性能。结果表明:共聚物为非晶聚合物;NVP的摩尔投料量对共聚物的性能有显著影响,随NVP投料量增大,共聚物的分子量有所下降,玻璃化转变温度(Tg)增大;由于亲水性PVP和PHEMA链段的引入,共聚物的亲水性优于相应的线型聚乳酸材料。  相似文献   

11.
丙烯酸β-羟丙酯与聚氯乙烯膜的紫外光接枝改性   总被引:4,自引:0,他引:4  
采用液相接枝方法 ,在紫外线辐照下 ,合成了一系列丙烯酸 β-羟丙酯 (β -HPAT) /聚氯乙烯接枝膜。讨论了引发剂浓度、单体浓度、光照时间、光照强度对接枝率的影响。结果表明 ,引发剂浓度为 6 .5 1× 10 -3 mol/L ,单体浓度 2 .0mol/L ,光照时间为 2 .0h ,且光照强度越强时 ,接枝率最大。接枝膜的结构特征通过FT -IR光谱进行了确证 ,最后 ,对接枝膜进行TGA分析 ,结果表明聚氯乙烯经过表面改性后 ,表面极性增大 ,热稳定性大大提高。  相似文献   

12.
以γ射线引发顺丁烯二酸β-环糊精酯(CDM)和N-乙烯基吡咯烷酮(NVP)发生自由基链式反应,制备了顺丁烯二酸β-环糊精酯-N-乙烯基吡咯烷酮聚合物(CDM-NVP).优化后的CDM-NVP聚合物的合成条件为: CDM∶NVP为1∶0.7(w/w, CDM 3.6 g 和 NVP 2.52 g),辐照剂量4 kGy,DMF溶液用量为20 mL.在此条件下制备聚合物的产率为84%,重均分子量为20 kDa.结果表明,此聚合物可以同纳他霉素(NM)和多菌灵(MBC)形成稳定复合物.研究了复合物抑菌活性,测定了其表观稳定常数.利用紫外光谱、核磁图谱和相溶解度对药物复合物进行结构表征.303 K下,NM-CDM-NVP和 MBC-CDM-NVP复合物的表观稳定系数分别为12988.54和865.94 L/mol.抑菌实验结果表明,NM-CDM-NVP和 MBC-CDM-NVP复合物可以显著提高NM和MBC的溶解性和抑菌活性.  相似文献   

13.
Polyester copolymer sorbent materials that incorporate β-Cyclodextrin (β-CD) were prepared using water-in-oil (w/o) micro-emulsion conditions at variable β-CD: cross linker mole ratios; where the cross linker units were sebacoyl chloride (SCl) and terephthaloyl chloride (TCl). The copolymers were characterized using TGA, nitrogen adsorption, and NMR/IR spectroscopy. The dye-based sorption properties of the copolymers with p-nitrophenol (PNP) in aqueous solution were evaluated at pH 4.6 and 295 K using UV-Vis spectrophotometry. The uptake of PNP varied from 0.221 to 0.352 mmol/g, according to the nature of the cross linker and the copolymer mole ratio. The sorption capacity of SCl-based copolymers exceed that for TCl-based copolymers, and correlate with the relative swelling properties and hydrated surface areas of the sorbent frameworks. 1H NMR spectroscopy of copolymers with low levels of linker content (i.e. SCl or TCl) indicate dual sorption sites for PNP (i.e. β-CD inclusion sites and non-inclusion (interstitial) linker domains). The existence of dual sorption sites is similarly concluded for copolymers containing higher levels of cross linker. Inclusion complexes are firstly formed between PNP and the β-CD inclusion sites of the copolymer; thereafter, PNP is adsorbed onto the linker domains of the copolymer sorbent framework.  相似文献   

14.
研究了丙烯酰胺(AM)与N-乙烯基吡咯烷酮(NVP)在水/四氢呋喃(THF)溶液中的自由基共聚。发现,当水溶液中含THF,AM的聚合速率下降,NVP的聚合速率提高。黏度测定发现,在THF质量分数为28%,AM/NVP物质的量比为5∶1的水/THF体系中,共聚物的黏度达到最大值,与该体系中NVP的聚合速率达到最大值相一致。溶液中加入氯化钠,AM的聚合速率提高,但随THF的含量增加而降低。加入尿素,在含水率达到较大值,NVP聚合速率最大。用透射电子显微镜(TEM)和核磁共振谱(NMR)对聚合物结构进行了表征。在水/THF中,共聚物链自组装形成"核―壳"状微聚体。NVP上的五元环聚集成"核"状,共聚物链的酰胺基团尽量舒展,形成"壳"状。溶剂的组成变化伴随"核―壳"状微聚体半径的改变,影响AM和NVP的聚合速率。  相似文献   

15.
Agar microspheres were prepared by water–oil emulsification and cross‐linked under alkaline condition. The thermoresponsive hydrophobic copolymer, poly(N‐isopropylacrylamide‐co‐lauryl methacrylate‐co‐acrylamide), was grafted on the agar microspheres via atom transfer radical polymerization. The agar microspheres grafted with copolymers were characterized by light microphotography, elemental analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, and X‐ray photoelectron spectroscopy. The chain lengths and hydrophobic monomer ratio of the grafting linear polymer had significant effects on the hydrophobicity and adsorption capacity of agar microspheres at different temperatures. The thermoresponsive microspheres were used for separation of proteins and showed binding and release behavior by change of temperatures without change in mobile phase composition. Thus, we suggest thermoresponsive agar microspheres as an alternative separation media for all‐aqueous bioseparations.  相似文献   

16.
Comb-like copolymer of N-phenyl maleimide and n-octadecyl vinyl ether was synthesized by conventional free radical solution polymerization. The molecular weight and molecular weight distribution were measured by GPC. The chemical composition of copolymer was characterized by FT-IR, 1H NMR and 13C NMR, and the results indicated that the obtained copolymer contained much more content of N-phenyl maleimide rather than equal molar ratio of monomer unit. The comb-like copolymer can exhibit upper critical solution temperature thermoresponsive phase behavior reversibly in N,N-dimethylformamide and some proper alcohols such as 1-butanol, 1-hexanol, etc. The effect of polymer concentration and co-solvent on thermoresponsive behavior of polymer solution was investigated, and the cloud point of polymer solution can be tuned conveniently. The high resolution 1H NMR method was used to comprehend the reversible thermoresponsive behavior in molecular level, and the results revealed that as temperature decreased the pendent long alkyl side chain aggregated and phase separation occurred at cloud point temperature; however, the mobility of main polymer chain decreased at lower temperature.  相似文献   

17.
将N,N二甲基丙烯酰胺N,N′乙撑双丙烯酰胺共聚物部分水解,在共聚物中引入适量的羧基.含羧基的聚合物与氨基酸甲酯缩合,然后使酯基皂化,将氨基酸引入聚合物.将革兰氏阳性菌细胞壁粘肽的三种类似物(-Gly,-Gly-DAla,-Gly-DAla-DAla)分别引入上述聚合物,合成了3种万古霉素系列抗菌素的亲和吸附剂(Ⅰ,Ⅱ和Ⅲ).结果表明,吸附剂Ⅱ和吸附剂Ⅲ对N去甲万古霉素的吸附量分别为0.80和0.86mmol/g;最佳吸附pH值为6左右;吸附剂Ⅰ的吸附量随着吸附液中盐浓度的增加而显著降低,而吸附液中盐浓度对吸附剂Ⅱ的吸附量影响较小.说明亲和作用在吸附剂Ⅱ的吸附中贡献较大.用0.4mol/LNa2CO3(pH9.5)/CH3CN(体积比为7/3)作为洗脱剂可完全脱附被吸附的N去甲万古霉素.  相似文献   

18.
The copolymer of poly(N-isopropylacrylamide)-co-poly(4-vinylpyridine) was synthesized by free radical copolymerization of 4-vinylpyridine and N-isopropylacrylamide. The copolymer synthesized with the feed monomer ratio of 4-vinylpyridine/N-isopropylacrylamide equal to 1/3 was associated to form thermoresponsive colloid in neutral water at room temperature, the average size and the cloud-point temperature of which were 40 nm and 32 °C, respectively. The thermoresponsive colloid was used as scaffold to load 2-nm Au nanoparticles to form the responsive catalyst of colloid-stabilizing gold nanoparticles. The catalysis in the model reduction of 4-nitrophenol with NaBH4 suggested that the catalytic reduction could be modulated due to the thermoresponsive phase-transition of the colloid-stabilizing gold nanoparticles. That was, the catalytic reduction firstly accelerated with the increase in temperature below the cloud-point temperature and then decelerated with the increase in temperature above the cloud-point temperature of the thermoresponsive colloid-stabilizing Au nanoparticles.  相似文献   

19.
In this research, thermoresponsive and conductive fibers with core‐sheath structure were fabricated by coaxial electrospinning. For preparing the spinning sheath solution, poly‐(N‐isopropylacrylamide‐co‐N‐methylolacrylamide) (PNN) copolymer having thermoresponsive and cross‐linkable properties was synthesized by free‐radical polymerization using redox initiators; it was then mixed with the conductive poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) at different weight ratios in water. On the other hand, poly(butyl acrylate‐co‐styrene) (PBS) copolymer synthesized by emulsion polymerization was dissolved in chloroform and used as the spinning core solution. After electrospinning, the fibers were treated at 110 °C for 1 h to cross‐link the PNN portion in the sheath for strengthening the fibers. Well‐defined core‐sheath fibers were observed from SEM pictures; the outside and inside (core) diameters were 568 ± 24 and 290 ± 40 nm, respectively, as determined from TEM pictures. The fiber mats were further doped by DMSO to enhance their conductivity. For the fiber mat with the weight ratio of PEDOT:PSS/PNN at 0.20 in the sheath, its surface conductivity could reach 29.4 S/cm. In addition, the fiber mats exhibited thermoresponsive properties that both swelling ratio and electric resistance decreased with temperature. Furthermore, the fiber mats exhibited improved flexibility as evaluated via bending test. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1299–1307  相似文献   

20.
Amphiphilic block poly(propylene carbonate)‐block‐allyloxypolyethyleneglycol (PPC‐b‐APEG) copolymer was synthesized by the click chemistry, and its structure were characterized. PPC‐b‐APEG can self‐assemble into micelles without emulsifier in water. Shell cross‐linked micelles were obtained by the reaction of the allyloxy groups, which were exposed on the outer of the PPC‐b‐APEG micelles, and N‐vinylpyrrolidone (NVP). The morphology and size of the micelles before and after cross‐link reactions were characterized. The research result shows that the shell cross‐linking could improve the stability of micelles. The particle size of uncross‐linked micelle was about 800 nm. The size of cross‐linked micelles increased with increasing amount of cross‐linking degree. To better evaluate the release behavior of PPC‐b‐PEG copolymer, doxorubicin (DOX)‐loaded micelles were synthesized using DOX as the model drug. Results showed that the DOX releasing rate decreased with increasing of NVP. The shell cross‐linking do decrease the burst release behaviours of DOX and reduce the DOX release rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号