首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Template synthesis of various morphological gold colloidal nanoparticles using a thermoresponsive and pH-responsive coordination triblock copolymer of poly(ethylene glycol)-b-poly(4-vinylpyridine)-b-poly(N-isopropylacrylamide) is studied. The template morphology of the thermoresponsive and pH-responsive coordination triblock copolymer, which can be tuned by simply changing the pH or temperature of the triblock copolymer aqueous solution, ranges from single chains to core-corona micelles and further to micellar clusters. Various morphological gold colloidal nanoparticles such as discrete gold nanoparticles, gold@polymer core-shell nanoparticles, and gold nanoparticle clusters are synthesized on the corresponding template of the triblock copolymer by first coordination with gold ions and then reduction by NaBH4. All three resultant gold colloidal nanoparticles are stable in aqueous solution, and their sizes are 2, 10, and 7 nm, respectively. The gold@polymer core-shell nanoparticles are thermoresponsive. The gold nanoparticle cluster has a novel structure, and each one holds about 40 single gold nanoparticles.  相似文献   

2.
Adsorption of the thermoresponsive copolymer of poly(N-isopropylacrylamide-co-4-vinylpyridine) (PNIPAM-co-P4VP) onto the core-shell microspheres of poly(styrene-co-methylacrylic acid) (PS-co-PMAA) is studied. The core-shell PS-co-PMAA microspheres are synthesized by one-stage soap-free polymerization in water. The copolymer of PNIPAM-co-P4VP is synthesized by free radical polymerization of N-isopropylacrylamide and 4-vinylpyridine in the mixture of DMF and water using K2S2O8 as initiator. Adsorption of PNIPAM-co-P4VP onto the core-shell PS-co-PMAA microspheres results in formation of the composite microspheres of PS/PMAA-P4VP/PNIPAM. The driven force to adsorb the copolymer of P4VP-co-PNIPAM onto the core-shell PS-co-PMAA microspheres is ascribed to hydrogen-bonding and electrostatic affinity between the P4VP and PMAA segments. The resultant composite microspheres of PS/PMAA-P4VP/PNIPAM with surface chains of PNIPAM are thermoresponsive in water and show a cloud-point temperature at about 33 °C.  相似文献   

3.
The synthesis of a thermoresponsive hydrogel of poly(glycidyl methacrylate‐coN‐isopropylacrylamide) (PGMA‐co‐PNIPAM) and its application as a nanoreactor of gold nanoparticles are studied. The thermoresponsive copolymer of PGMA‐co‐PNIPAM is first synthesized by the copolymerization of glycidyl methacrylate and N‐isopropylacrylamide using 2,2′‐azobis(isobutyronitrile) as an initiator in tetrahydrofuran at 70 °C and then crosslinked with diethylenetriamine to form a thermoresponsive hydrogel. The lower critical solution temperature (LCST) of the thermoresponsive hydrogel is about 50 °C. The hydrogel exists as 280‐nm spheres below the LCST. The diameter of the spherical hydrogel gradually decreases to a minimum constant of 113 nm when the temperature increases to 75 °C. The hydrogel can act as a nanoreactor of gold nanoparticles because of the coordination of nitrogen atoms of the crosslinker with gold ions, on which a hydrogel/gold nanocomposite is synthesized. The LCST of the resultant hydrogel/gold nanocomposite is similar to that of the hydrogel. The size of the resultant gold nanoparticles is about 15 nm. The hydrogel/gold nanocomposite can act as a smart and recyclable catalyst. At a temperature below the LCST, the thermoresponsive nanocomposite is a homogeneous and efficient catalyst, whereas at a temperature above the LCST, it becomes a heterogeneous one, and its catalytic activity greatly decreases. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2812–2819, 2007  相似文献   

4.
Self-assembled poly(4-vinylpyridine)-grafted gold (Au) nanoparticles (NPs) and polystyrene-b-poly(4-vinylpyridine) block copolymers were fabricated by the introduction of a selective solvent to a common solution. The assembled mixtures were spin-coated onto solid substrates to fabricate composite gold/polymer thin films composed of copolymer-hybridized Au NPs and independent copolymer micelles. The obtained composite Au thin films had variable localized surface plasmon resonance (LSPR) bands and microscopic morphologies upon vapor annealing with selective solvents because the adsorption and dissolving of solvent molecules into the films could rearrange the copolymer block. The hybrid nanostructured Au thin films may have potential in vapor sensing and organic assays.  相似文献   

5.
杨振忠 《高分子科学》2017,35(7):799-808
Polymer/metal composite segmental Janus nanoparticles(NPs) are synthesized by sequential growth againstpoly(4-vinylpyridine)(P4VP) crosslinked cP4VP-PS Janus NPs. A Janus cluster of poly(4-vinylpyridine)-block-polystyrene(P4VPb-PS) diblock copolymer is self-organized after absorption onto a silica patchy sphere via hydrogen bonding. Selective crosslinking of P4VP leads to the formation of robust cP4VP-PS Janus NPs. Within the cP4VP domain, functional species such as metals are preferentially grown by in situ reduction. Other thiol-capped polymers, for example, thiol-cappedpoly(Nisopropylacrylamide)(PNIPAM-SH), can be conjugated onto the opposite side to form polymer/metal triple segmental Janus NPs. The hyperthermia effect of Au NP of PNIPAM-Au@cP4VP-PS by near infrared(NIR) irradiation can trigger a fast transition from amphiphilic to hydrophobic of the Janus NPs at low surrounding temperature. De-stabilization ofthe emulsion is NIR triggered although the system temperature is below LCST(~32 °C).  相似文献   

6.
A study is presented of the preparation of gold nanoparticles incorporated into biodegradable micelles. Poly(ethylene oxide)-b-poly(epsilon-caprolactone) (PEO-b-PCL) copolymer was synthesized by ring-opening polymerization, and the hydroxyl end group of the PCL block was modified with thioctic acid using dicyclohexyl carbodiimide as the coupling reagent. The PEO-b-PCL-thioctate ester (TE) thus obtained was used in a later step to form monolayer protected gold nanoparticles via the thioctate spacer. Gold nanoparticles stabilized with the PEO-b-PCL block (named Au/Block (x/y), where x/y is the mole feed ratio between HAuCl4 and PEO-b-PCL-TE) were prepared and analyzed. Au/Block (1/1), Au/Block (2/1), and Au/Block (3/1) nanoparticles were found to form stable dispersions in the organic solvents commonly used to dissolve the unlabeled block copolymer. The average diameter of the nanoparticles was determined by transmission electron microscopy (TEM) and found to be 6+/-2 nm. Au/Block (4/1) nanoparticle dispersions in organic solvents, on the other hand, were not stable and produced large gold clusters (50-100 nm). Cluster formation was attributed to the low grafting density of the block copolymer, which facilitates agglomeration. For Au/Block (12/1), along the same trend, only an insoluble product was isolated. Micelles in water were prepared by the slow addition of the dilute Au/Block solution in dimethylformamide into a large excess of water with vigorous stirring. Au/Block (1/1) and Au/Block (2/1) formed nanosized structures of 5-7 nm. TEM images of stained Au/Block (1/1) micelles, made in water, clearly showed the formation of core-shell structures. Au/Block (3/1) micelles, on the other hand, were not stable and large agglomerates a few microns in size were observed. The study focuses on the synthesis, characterization, and aggregation behavior of gold-loaded PEO-b-PCL block copolymer micelles, a potential system for drug delivery in conjunction with tissue and subcellular localization studies.  相似文献   

7.
A simple strategy to tailor the surface of nanoparticles for their specific adsorption to and localization at block copolymer interfaces was explored. Gold nanoparticles coated by a mixture of low molecular weight thiol end-functional polystyrene (PS-SH) (Mn = 1.5 and 3.4 kg/mol) and poly(2-vinylpyridine) homopolymers (P2VP-SH) (Mn = 1.5 and 3.0 kg/mol) were incorporated into a lamellar poly(styrene-b-2-vinylpyridine) diblock copolymer (PS-b-P2VP) (Mn = 196 kg/mol). A library of nanoparticles with varying PS and P2VP surface compositions (FPS) and high polymer ligand areal chain densities was synthesized. The location of the nanoparticles in the PS-b-P2VP block copolymer was determined by transmission electron microscopy. Sharp transitions in particle location from the PS domain to the PS/P2VP interface, and subsequently to the P2VP domain, were observed at FPS = 0.9 and 0.1, respectively. This extremely wide window of FPS values where the polymer-coated gold nanoparticles adsorb to the interface suggests a redistribution of PS and P2VP polymers on the Au surface, inducing the formation of amphiphilic nanoparticles at the PS/P2VP interface. In a second and synthetically more challenging approach, gold nanoparticles were covered with a thiol terminated random copolymer of styrene and 2-vinylpyridine synthesized by RAFT polymerization. Two different random copolymers were considered, where the molecular weight was fixed at 3.5 kg/mol and the relative incorporation of styrene and 2-vinylpyridine repeat units varied (FPS = 0.52 and 0.40). The areal chain density of these random copolymers on Au is unfortunately not high enough to preclude any contact between the P2VP block of the block copolymer and the Au surface. Interestingly, gold nanoparticles coated by the random copolymer with FPS = 0.4 were dispersed in the P2VP domain, while those with FPS = 0.52 were located at the interface. A simple calculation for the adsorption energy to the interface of the nanoparticles with different surface arrangements of PS and P2VP ligands supports evidence for the rearrangement of thiol terminated homopolymers. An upper limit estimate of the adsorption energy of nanoparticles uniformly coated with a random arrangement of PS and P2VP ligands where a 10% surface area was occupied by P2VP -mers or chains was approximately 1 kBT, which indicates that such nanoparticles are unlikely to be segregated along the interface, in contrast to the experimental results for nanoparticles with mixed ligand-coated surfaces.  相似文献   

8.
A facile approach to attach high-density and uniform gold nanoparticles on individual multi-walled carbon nanotubes (MWNTs) is achieved. By simple grinding, water-soluble linear polymers poly(4-vinylpyridine) (PVP)-wrapped around nanotubes and thus rendered them reversibly soluble in water, ethanol, and DMF. Individual tubes are clearly observed after PVP-wrapped nanotubes were spin-coated onto a silicon wafer. Subsequently, Au nanoparticles were densely decorated on the individual MWNTs by in situ reduction of HAuCl4 in the homogeneous aqueous solution of MWNTs–PVP to form stable water-dispersible Au/PVP/MWNTs hybrid. Morphology of Au nanoparticles was determined by scanning electron microscope and atomic force microscope. The diameter of the Au nanoparticles is controlled in the range of 3.5 to 13.5 nm. The presence of gold nanoparticles with decreased particle size was also detected by UV–Vis spectroscopy.  相似文献   

9.
We synthesized hierarchical Polystyrene/Polyaniline@Au(PS/PANI@Au) catalysts through a seeded swelling polymerization and in-situ reduction procedure. PS/PANI@Au catalysts possess a core of PS as seed and template, a PANI shell with fibers and uniform gold nanoparticles on the surface. The configuration changes of the PANI chains resulting from the doping/ dedoping procedure led to various loading amounts of Au nanoparticles. Reduction of 4-nitrophenol was chosen as the probe reaction to evaluate the catalytic activity of supported Au nanocatalysts. The catalytic results indicated that dedoping treatment of the PS/PANI supports provides stronger coordinative ability to metal nanoparticles as well as more –N= groups, which results in a better catalytic performance towards the reduction of 4-nitrophenol.  相似文献   

10.
Micelle-supported gold composites with a polystyrene core and a poly(4-vinyl pyridine)/Au shell are synthesized using NaBH(4) to reduce a mixture of micelle and HAuCl(4) in acidic aqueous solution (pH approximately 2). The template micelle with a polystyrene core and a poly(4-vinyl pyridine) shell is formed by self-assembly of block copolymer polystyrene-block-poly(4-vinyl pyridine). The gold nanoparticles coated onto the surfaces of the composites possess an average diameter of about 15 nm. The composites are applied to catalyze the reduction of p-nitrophenol in the presence of NaBH(4), and the results indicate that the kinetic constant of the reaction increases when the composite concentration and the reaction temperature increase. In addition, research results also indicate that composites with high content of gold show higher catalytic activity and higher catalytic efficiency.  相似文献   

11.
Micellization of a poly(ethylene oxide)-block-poly(4-vinylpyridine) (PEO45-b-P4VP28) copolymer in water during metalation (incorporation of gold compounds and gold nanoparticle formation) with three types of gold compounds, NaAuCl4, HAuCl4, and AuCl3, was studied using dynamic light scattering (DLS) and transmission electron microscopy (TEM). The transformations of the PEO45-b-P4VP28 block copolymer micelles in water were found to depend on a number of parameters including the thermal history of the as-prepared block copolymer, the type of the metal compound, and the metal loading. For the HAuCl4-filled PE045-b-P4VP28 micelles, the subsequent reduction with hydrazine hydrate results in a significant fraction of rodlike micelles, suggesting that slow nucleation (confirmed by the formation of the large gold nanoparticles) and facilitated migration of gold ions yields the ideal conditions for sphere-to-rod micellar transition.  相似文献   

12.
A study is presented of the stabilization of gold and palladium nanoparticles (NPs) via a place-exchange reaction. Au and Pd NPs of approximately 3.5 nm were prepared by a conventional method using tetraoctylammonium bromide (TOAB) as the stabilizing agent. The resulting nanoparticles, referred to as Au-TOAB or Pd-TOAB, were later used as templates for the replacement of TOAB ligand with poly(ethylene oxide)- b-polystyrene- b-poly(4-vinylpyridine) (PEO- b-PS- b-P4VP) triblock copolymer. This biamphiphilic triblock copolymer was synthesized by atom transfer radical polymerization (ATRP) with control over the molecular weight and polydispersity. The place-exchange reaction was mediated through strong coordination forces between the 4-vinylpyridine copolymer and the metal species located on the surface of the nanoparticles. In addition, the displacement of the outgoing low molecular weight TOAB ligands by high molecular weight polymers is an entropy-assisted process and is believed to contribute to stabilization. The prepared complex, polymer-NP, exhibits greatly improved stability over the metal-NP complex in common organic solvents for the triblock copolymer. Self-assembly in water after ligand exchange resulted in micellar structures of about approximately 20 nm (electron microscopy) with the metal NP found located on the surface of the micelles. The stability of the nanoparticles in water was shown to depend greatly on the grafting density of the copolymer, with high stability (more than 6 months) at high grafting density and low stability, accompanied with irreversible agglomeration, at relatively low grafting densities. The surprising location of the metal NP (for both Au and Pd) on the surface of the micelles in water is explained by the fact that, upon self-assembly in THF/water system, the most hydrophobic chains (i.e., PS) undergo self-assembly first at low water content forming the core, followed by the P4VP (whether or not associated with the metal) forming a shell, and finally the PEO forming the corona. In lower metal content assemblies, the P4VP chains located in the shell undergo swelling in an acidic medium causing a substantial increase in micellar corona size, as confirmed by dynamic light scattering measurements. The present study offers a simple approach for the stabilization of various metal nanoparticles of catalytic interest, using a unique polymeric support that can be dispersed in organic solvents as well as aqueous solutions.  相似文献   

13.
Gold nanoparticle-doped poly(2-vinylpyridine) (P2VP) microcapsules and foam films were synthesized and assembled at the P2VP chloroform solution/HAuCl(4) aqueous solution interface at 25 °C. It was found that Au nanoparticles with the average diameter of 2.1 nm were homogeneously embedded in and adsorbed on the walls of the capsules and foams, the nanoparticles were composed of Au(0) and Au(III) with the molar ratio of about 75/25, and the mass percent of Au elements was measured to be 19.65%. The formation of the nanostructures was attributed to the self-assembly of P2VP at the liquid/liquid interface, the simultaneous reduction of AuCl(4)(-) ions by a small amount of ethanol in the chloroform and adsorption of AuCl(4)(-) ions. After irradiated by UV-light for 1h, the average diameter of the nanoparticles was found to be 2.2 nm, and the AuCl(4)(-) ions were transformed to Au(0) completely. The catalytic performance of these composite nanostructures were evaluated by using the reduction of 4-nitrophenol (4-NP) by potassium borohydride in aqueous solutions. The catalytic activity was very high in the first cycle, decreased rapidly and slightly in the second and third cycles, respectively, due to the aggregation of some nanoparticles, and stabilized after the third cycle.  相似文献   

14.
Au/TiO2 nanocomposites have been prepared by UV photolysis or chemical reduction of a Au(III) complex formed on a spherical or a rodlike TiO2 support, and their catalytic activity for 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging reaction was investigated. The chemical reduction with dimethylamine borane (DMAB) provided smaller gold nanoparticles than those synthesized by UV photolysis. Type of the TiO2 also affected the size of gold particles; smaller gold particles were deposited on the spherical TiO2 support than on rodlike one. For the radical scavenging reaction, the Au/TiO2 nanocomposites prepared by chemical reduction exhibited a higher catalytic activity than those photochemically prepared, and rodlike TiO2 provided a higher activity than spherical one. The effects of preparation methods and type of TiO2 supports on the catalytic activity are discussed.  相似文献   

15.
采用具有分等级孔道结构的SiO2(HMS)为载体,通过润湿浸渍引入少量CeO2,经焙烧得到CeO2/HMS复合载体,然后采用沉积沉淀法负载上Au纳米粒子,得到Au/CeO2/HMS三元复合催化剂.通过X射线衍射、程序升温还原和原位红外光谱等手段表征了催化剂的结构.结果表明,CeO2的存在可控制Au颗粒的沉积并稳定载体上的纳米Au颗粒.Au/CeO2/HMS上CO低温氧化反应完全转化温度为60oC.高度分散的Au0可以活化CO,CeO2颗粒则可以提供反应需要的氧.稳定性测试结果显示,反应48h催化剂活性维持不变.  相似文献   

16.
The silica/polymer hybrid hollow nanoparticles with channels and gatekeepers were successfully fabricated with a facile strategy by using thermoresponsive complex micelles of poly(ethylene glycol)-b-poly(N-isopropylacrylamide) (PEG-b-PNIPAM) and poly(N-isopropylacrylamide)-b-poly(4-vinylpyridine) (PNIPAM-b-P4VP) as the template. In aqueous solution, the complex micelles (PEG-b-PNIPAM/PNIPAM-b-P4VP) formed with the PNIPAM block as the core and the PEG/P4VP blocks as the mixed shell at 45 °C and pH 4.0. After shell cross-linking by 1,2-bis(2-iodoethoxyl)ethane (BIEE), tetraethylorthosilicate (TEOS) selectively well-deposited on the P4VP block and processed the sol-gel reaction. When the temperature was decreased to 4 °C, the PNIPAM block became swollen and further soluble, and the PEG-b-PNIPAM block copolymer escaped from the hybrid nanoparticles as a result of swelled PNIPAM and weak interaction between PEG and silica at pH 4.0. Therefore, the hybrid hollow silica nanoparticles with inner thermoresponsive PNIPAM as gatekeepers and channels in the silica shell were successfully obtained, which could be used for switchable controlled drug release. In the system, the complex micelles, as a template, could avoid the formation of larger aggregates during the preparation of the hybrid hollow silica nanoparticles. The thermoresponsive core (PNIPAM) could conveniently control the hollow space through the stimuli-responsive phase transition instead of calcination or chemical etching. In the meantime, the channel in the hybrid silica shell could be achieved because of the escape of PEG chains from the hybrid nanoparticles.  相似文献   

17.
Micelles having a core of polystyrene and a mixed shell of poly(ethylene glycol) and poly(4-vinylpyridine) were formed through self-assembly of a triblock copolymer poly(ethylene glycol)- block-polystyrene- block-poly(4-vinylpyridine) in acidic water (pH 2). Reducing the HAuCl(4)-treated micelle solution leads to the formation of the Au-micelle composites with a core of polystyrene, a hybrid shell of poly(4-vinylpyridine)/Au/poly(ethylene glycol), and a corona of poly(ethylene glycol). The gold nanoparticles with controlled sizes were anchored to poly(4-vinylpyridine) to form the physically cross-linked hybrid shell. In aqueous solution, the hybrid shell is swollen and the swollen degree is sensitive to the pH condition. Under basic conditions, the channel in the hybrid shells of the composite is produced, which renders the composites a good catalytic activity. In addition, the composites also show good stability, unchanged hydrodynamic diameter, and surface plasmon absorption under different pH conditions.  相似文献   

18.
Non-ionic N-isopropylacrylamide (PNIPAM) microgel is employed to investigate the molecular motion of polymer chains in the swollen and collapsed states. This study is performed using incoherent elastic (IES) and quasielastic neutron scattering (IQNS). IES measurements show an increase of both, the elastic intensity and the oscillations of the polymer network vibrational amplitude at the transition temperature. IQNS was measured at two different selected temperatures 290 K and 327 K corresponding to the swollen and collapsed states, respectively. The diffusion constant from IQNS experiments decreases nearly two orders of magnitude when the microgel de-swells and finally collapses.  相似文献   

19.
Amphiphilic colloids of CdS and noble metal nanoparticles, which can be dispersed both in water and organic solvents such as ethanol, N,N-dimethylformamide, chloroform, and toluene, are studied. The amphiphilic colloidal nanoparticles are synthesized by grafting the amphiphilic and thermoresponsive polymer of thiol-terminated poly(N-isopropylacrylamide) to CdS and noble metal nanoparticles. The size and morphology of the PNIPAM-grafted colloidal nanoparticles of CdS@PNIPAM can be tuned by changing the molar ratio of PNIPAM/CdS. The size of CdS@PNIPAM nanoparticles slightly decreases first from 5.5 to 4.4 nm then slightly increases from 4.4 to 6.1 nm with the decrease in the molar ratio from 1/1 to 1/10. Spherical nanoparticles of CdS@PNIPAM are synthesized at a higher molar ratio and worm-like nanoparticles are obtained at a lower molar ratio. The resultant PNIPAM-grafted colloidal nanoparticles of CdS@PNIPAM, Au@PNIPAM, Pd@PNIPAM, and Ag@PNIPAM are thermoresponsive in water and show a cloud-point temperature at about 32.5 degrees C.  相似文献   

20.
A monolayer of gold-containing surface micelles has been produced by spin-coating solution micelles formed by the self-assembly of the gold-modified polystyrene-b-poly(2-vinylpyridine) block copolymer in toluene. After oxygen plasma removed the block copolymer template, highly ordered and uniformly sized nanoparticles have been generated. Unlike other published methods that require reduction treatments to form gold nanoparticles in the zero-valent state, these as-synthesized nanoparticles are in form of metallic gold. These gold nanoparticles have been demonstrated to be an excellent catalyst system for growing small-diameter silicon nanowires. The uniformly sized gold nanoparticles have promoted the controllable synthesis of silicon nanowires with a narrow diameter distribution. Because of the ability to form a monolayer of surface micelles with a high degree of order, evenly distributed gold nanoparticles have been produced on a surface. As a result, uniformly distributed, high-density silicon nanowires have been generated. The process described herein is fully compatible with existing semiconductor processing techniques and can be readily integrated into device fabrication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号