首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a Cu-based metal–organic framework (MOF) decorated by CuO nanostructures as an efficient catalyst for the oxygen evolution reaction (OER). MIL-53(Cu) was synthesized by a hydrothermal approach using 1,4-bezenedicarboxylic acid as organic precursor and further annealed at 300°C to form CuO nanostructures on its surface. The produced electrocatalyst, CuO@MIL-53(Cu), was characterized using various techniques. Under alkaline conditions, the developed electrocatalyst exhibited an overpotential of 801 and 336 mV versus RHE at 10 and 1 mA cm−2, respectively. The reproducibility of the catalytic performance was validated using several electrodes. It was confirmed that the CuO hair-like nanostructures grown on MIL-53(Cu) using thermal treatment exhibit high OER activity, good kinetics and durability. CuO@MIL-53(Cu) is an economic noble-metal-free OER electrocatalyst. It has potential for application as anode material for sustainable energy technologies like batteries, fuel cells and water electrolysis.  相似文献   

2.
Described here is a new and viable approach to achieve Pd catalysis for aerobic oxidation systems (AOSs) by circumventing problems associated with both the oxidation and the catalysis through an all‐in‐one strategy, employing a robust metal–organic framework (MOF). The rational assembly of a PdII catalyst, phenanthroline ligand, and CuII species (electron‐transfer mediator) into a MOF facilitates the fast regeneration of the PdII active species, through an enhanced electron transfer from in situ generated Pd0 to CuII, and then CuI to O2, trapped in the framework, thus leading to a 10 times higher turnover number than that of the homogeneous counterpart for Pd‐catalyzed desulfitative oxidative coupling reactions. Moreover, the MOF catalyst can be reused five times without losing activity. This work provides the first exploration of using a MOF as a promising platform for the development of Pd catalysis for AOSs with high efficiency, low catalyst loading, and reusability.  相似文献   

3.
To gain insight into the underlying mechanisms of catalyst durability for the selective catalytic reduction (SCR) of NOx with an ammonia reductant, we employed scanning transmission X‐ray microscopy (STXM) to study Cu‐exchanged zeolites with the CHA and MFI framework structures before and after simulated 135 000‐mile aging. X‐ray absorption near‐edge structure (XANES) measurements were performed at the Al K‐ and Cu L‐edges. The local environment of framework Al, the oxidation state of Cu, and geometric changes were analyzed, showing a multi‐factor‐induced catalytic deactivation. In Cu‐exchanged MFI, a transformation of CuII to CuI and CuxOy was observed. We also found a spatial correlation between extra‐framework Al and deactivated Cu species near the surface of the zeolite as well as a weak positive correlation between the amount of CuI and tri‐coordinated Al. By inspecting both Al and Cu in fresh and aged Cu‐exchanged zeolites, we conclude that the importance of the preservation of isolated CuII sites trumps that of Brønsted acid sites for NH3‐SCR activity.  相似文献   

4.
Microporous NaY zeolite is a common support of Cu catalysts for oxidative carbonylation of methanol, but the dispersion of Cu species on NaY is usually subjected to its micropore size. Here, ordered mesoporous KIT-6 was employed as the support for Cu catalyst and Al was incorporated into its framework to increase the surface acidity, which eventually improves the surface exchange capacity and Cu dispersion. The evolution of the state of Cu species on KIT-6 was analyzed combined with control of Cu loading. The physicochemical properties of the supports and corresponding catalysts were characterized by N2 adsorption–desorption, X-ray diffraction, ammonia temperature programmed desorption, Fourier transform infrared spectra, transmission electron microscopy, hydrogen temperature programmed reduction, and X-ray photoelectron spectroscopy. It was found that mesoporous KIT-6 showed better Cu dispersion than microporous NaY zeolite. Agglomerated CuO, dispersed CuO, and Cu2+ are the major Cu species observed on the catalyst surface. The increased surface acidic sites of KIT-6 by Al incorporation promoted the formation of Cu2+ and dispersion of CuO. With the increase in Cu loading, the Cu2+ content in the catalyst was decreased gradually along with increase in the bulk CuO. It was speculated that some exchanged Cu2+ could be transformed into highly dispersed CuO and even bulk CuO after calcination at a high Cu loading. Combined with the catalyst evaluation results, it was deduced that highly dispersed Cu2+ and CuO particles play significant roles in catalytic activity. The catalyst Cu/Al-K-10 achieved the highest space time yield of dimethyl carbonate of 135.4 mg/(g·h), which is 2.7 times the Cu/K-10 owing to its more dispersed Cu species. This laid the basis for preparing highly dispersed Cu species on mesoporous silica supports.  相似文献   

5.
The complex CuII(Py3P) ( 1 ) is an electrocatalyst for water oxidation to dioxygen in H2PO4?/HPO42? buffered aqueous solutions. Controlled potential electrolysis experiments with 1 at pH 8.0 at an applied potential of 1.40 V versus the normal hydrogen electrode resulted in the formation of dioxygen (84 % Faradaic yield) through multiple catalyst turnovers with minimal catalyst deactivation. The results of an electrochemical kinetics study point to a single‐site mechanism for water oxidation catalysis with involvement of phosphate buffer anions either through atom–proton transfer in a rate‐limiting O? O bond‐forming step with HPO42? as the acceptor base or by concerted electron–proton transfer with electron transfer to the electrode and proton transfer to the HPO42? base.  相似文献   

6.
Research on O2 activation at ligated CuI is fueled by its biological relevance and the quest for efficient oxidation catalysts. A rarely observed reaction is the formation of a CuII‐O‐CuII species, which is more special than it appears at first sight: a single oxo ligand between two CuII centers experiences considerable electron density, and this makes the corresponding complexes reactive and difficult to access. Hence, only a small number of these compounds have been synthesized and characterized unequivocally to date, and as biological relevance was not apparent, they remained unappreciated. However, recently they moved into the spotlight, when CuII‐O‐CuII cores were proposed as the active species in the challenging oxidation of methane to methanol at the surface of a Cu‐grafted zeolite and in the active center of the copper enzyme particulate methane monooxygenase. This Minireview provides an overview of these systems with a special focus on their reactivity and spectroscopic features.  相似文献   

7.
A one‐pot method for the fast synthesis of a 3D nanochain network (NNC) of PdCu alloy without any surfactants is described. The composition of the as‐prepared PdCu alloy catalysts can be precisely controlled by changing the precursor ratio of Pd to Cu. First, the Cu content changes the electronic structure of Pd in the 3D NNC of PdCu alloy. Second, the 3D network structure offers large open pores, high surface areas, and self‐supported properties. Third, the surfactant‐free strategy results in a relatively clean surface. These factors all contribute to better electrocatalytic activity and durability towards ethanol oxidation. Moreover, the use of copper in the alloy lowers the price of the catalyst by replacing the noble metal palladium with non‐noble metal copper. The composition‐optimized Pd80Cu20 alloy in the 3D NNC catalyst shows an increased electrochemically active surface area (80.95 m2 g?1) and a 3.62‐fold enhancement of mass activity (6.16 A mg?1) over a commercial Pd/C catalyst.  相似文献   

8.
Operando X‐ray absorption experiments and density functional theory (DFT) calculations are reported that elucidate the role of copper redox chemistry in the selective catalytic reduction (SCR) of NO over Cu‐exchanged SSZ‐13. Catalysts prepared to contain only isolated, exchanged CuII ions evidence both CuII and CuI ions under standard SCR conditions at 473 K. Reactant cutoff experiments show that NO and NH3 together are necessary for CuII reduction to CuI. DFT calculations show that NO‐assisted NH3 dissociation is both energetically favorable and accounts for the observed CuII reduction. The calculations predict in situ generation of Brønsted sites proximal to CuI upon reduction, which we quantify in separate titration experiments. Both NO and O2 are necessary for oxidation of CuI to CuII, which DFT suggests to occur by a NO2 intermediate. Reaction of Cu‐bound NO2 with proximal NH4+ completes the catalytic cycle. N2 is produced in both reduction and oxidation half‐cycles.  相似文献   

9.
The ground state electronic structure of copper corroles has been a topic of debate and revision since the advent of corrole chemistry. Computational studies formulate neutral Cu corroles with an antiferromagnetically coupled CuII corrole radical cation ground state. X‐ray photoelectron spectroscopy, EPR, and magnetometry support this assignment. For comparison, CuII isocorrole and [TBA][Cu(CF3)4] were studied as authentic CuII and CuIII samples, respectively. In addition, the one‐electron reduction and one‐electron oxidation processes are both ligand‐based, demonstrating that the CuII centre is retained in these derivatives. These observations underscore ligand non‐innocence in copper corrole complexes.  相似文献   

10.
《Electroanalysis》2018,30(8):1750-1756
Herein is described the development of a self‐powered sensor for gallic acid (GA) determination exploiting CdSe/ZnS quantum dot sensitized TiO2 nanoparticles (CdSe/ZnS/TiO2/FTO) as photoanode and an all copper oxide photocathode (CuO/Cu2O/FTO) to reduce water. A two‐chamber self‐powered photoelectrochemical cell was employed in order to maintain separated the photoelectrodes. The self‐powered photoelectrochemical cell is based on water reduction in the cathodic chamber while gallic acid acts as a hole scavenger in the anodic chamber to generate the necessary cell output to drive GA oxidation in the anodic compartment. Electrochemical impedance measurements were performed to evaluate the electronic characteristics of CdSe/ZnS/TiO2/FTO photoanode and CuO/Cu2O/FTO photocathode in terms of flat band potential, carrier density, and nature of semiconductor. Under optimized conditions, the self‐powered photoelectrochemical cell presented a wide linear response range for GA from 1 μmol L−1 up to 200 μmol L−1.  相似文献   

11.
Electrochemical water splitting is an ideal pollution‐free path to generate hydrogen at large scale, however, the development of highly catalytic electrocatalysts for the water oxidation reaction at large current densities is still a fundamental challenge. Herein, we report a novel, high‐wettability water‐oxidation electrocatalyst composed of an amorphous NiFe layer and CoS film on commercial nickel foam via a two‐step electrodeposition synthetic path. Benefiting from the strong interactions between the NiFe layer and CoS film, enlarged surface active sites and enhanced wettability, the CoS@NiFe/NF electrode exhibited an outstanding water oxidation performance at 10 mA/cm2 with an overpotential of 175 mV in 1 M KOH solution and steadily delivered a current density of 1 A/cm2 at merely 330 mV in 30 wt% KOH solution. Even at large densities, the CoS@NiFe/NF hybrids also showed excellent water oxidation stability and corrosion resistance for at least 24 h. Such a synergistic assembling approach to fabricate a CoS@NiFe/NF heterostructure together with excellent OER performance may be a promising strategy for rationally building and designing heterostructural electrocatalysts towards highly efficient water oxidation reaction.  相似文献   

12.
In nature, cytochrome c oxidases catalyze the 4e oxygen reduction reaction (ORR) at the heme/Cu site, in which CuI is used to assist O2 activation. Because of the thermodynamic barrier to generate CuI, synthetic Fe-porphyrin/Cu complexes usually show moderate electrocatalytic ORR activity. We herein report on a Co-corrole/Co complex 1-Co for energy-efficient electrocatalytic ORR. By hanging a CoII ion over Co corrole, 1-Co realizes electrocatalytic 4e ORR with a half-wave potential of 0.89 V versus RHE, which is outstanding among corrole-based electrocatalysts. Notably, 1-Co outperforms Co corrole hanged with CuII or ZnII. We revealed that the hanging CoII ion can provide an electron to improve O2 binding thermodynamically and dynamically, a function represented by the biological CuI ion of the heme/Cu site. This work is significant to present a remarkable ORR electrocatalyst and to show the vital role of a second-sphere redox-active metal ion in promoting O2 binding and activation.  相似文献   

13.
《中国化学快报》2021,32(11):3435-3439
A facile hydrothermal method was applied to gain stably and highly efficient CuO-CeO2 (denoted as Cu1Ce2) catalyst for toluene oxidation. The changes of surface and inter properties on Cu1Ce2 were investigated comparing with pure CeO2 and pure CuO. The formation of Cu-Ce interface promotes the electron transfer between Cu and Ce through Cu2+ + Ce3+ ↔ Cu+ + Ce4+ and leads to high redox properties and mobility of oxygen species. Thus, the Cu1Ce2 catalyst makes up the shortcoming of CeO2 and CuO and achieved high catalytic performance with T50 = 234 °C and T99 = 250 °C (the temperature at which 50% and 90% C7H8 conversion is obtained, respectively) for toluene oxidation. Different reaction steps and intermediates for toluene oxidation over Cu1Ce2, CeO2 and CuO were detected by in situ DRIFTS, the fast benzyl species conversion and preferential transformation of benzoates into carbonates through C=C breaking over Cu1Ce2 should accelerate the reaction.  相似文献   

14.
《化学:亚洲杂志》2018,13(19):2868-2880
The reaction of 3,7‐diacetyl‐1,3,7‐triaza‐5‐phosphabicyclo[3.3.1]nonane (DAPTA) with metal salts of CuII or NaI/NiII under mild conditions led to the oxidized phosphane derivative 3,7‐diacetyl‐1,3,7‐triaza‐5‐phosphabicyclo[3.3.1]nonane‐5‐oxide (DAPTA=O) and to the first examples of metal complexes based on the DAPTA=O ligand, that is, [CuII(μ‐CH3COO)2O‐DAPTA=O)]2 ( 1 ) and [Na(1κOO′;2κO‐DAPTA=O)(MeOH)]2(BPh4)2 ( 2 ). The catalytic activity of 1 was tested in the Henry reaction and for the aerobic 2,2,6,6‐tetramethylpiperidin‐1‐oxyl (TEMPO)‐mediated oxidation of benzyl alcohol. Compound 1 was also evaluated as a model system for the catechol oxidase enzyme by using 3,5‐di‐tert‐butylcatechol as the substrate. The kinetic data fitted the Michaelis–Menten equation and enabled the obtainment of a rate constant for the catalytic reaction; this rate constant is among the highest obtained for this substrate with the use of dinuclear CuII complexes. DFT calculations discarded a bridging mode binding type of the substrate and suggested a mixed‐valence CuII/CuI complex intermediate, in which the spin electron density is mostly concentrated at one of the Cu atoms and at the organic ligand.  相似文献   

15.
The hydrogenolysis of [Cu2{(iPrN)2(CCH3)}2] in the presence of hexadecylamine (HDA) or tetradecylphosphonic acid (TDPA) in toluene leads to 6–9 nm copper nanocrystals. Solution NMR spectroscopy has been used to describe the nanoparticle surface chemistry during the dynamic phenomenon of air oxidation. The ligands are organized as multilayered shells around the nanoparticles. The shell of ligands is controlled by both their intermolecular interactions and their bonding strength on the nanocrystals. Under ambient atmosphere, the oxidation rate of colloidal copper nanocrystals closely relies on the chemical nature of the employed ligands (base or acid). Primary amine molecules behave as soft ligands for Cu atoms, but are even more strongly coordinated on surface CuI sites, thus allowing a very efficient corrosion protection of the copper core. On the contrary, the TDPA ligands lead to a rapid oxidation rate of Cu nanoparticles and eventually to the re‐dissolution of CuII species at the expense of the nanocrystals.  相似文献   

16.
Transition metal complexes of arginine (using Co(II), Ni(II), Cu(II) and Zn(II) cations separately) were synthesized and characterized by FTIR, TG/DTA‐DrTG, UV‐Vis spectroscopy and elemental analysis methods. Cu(II)‐Arg complex crystals was found suitable for x‐ray diffraction studies. It was contained, one mole CuII and Na+ ions, two arginate ligands, one coordinated aqua ligand and one solvent NO3? group in the asymmetric unit. The principle coordination sites of metal atom have been occupied by two N atoms of arginate ligands, two carboxylate O atoms, while the apical site was occupied by one O atom for CuII cation and two O atoms for CoII, NiII, ZnII atoms of aqua ligands. Although CuII ion adopts a square pyramidal geometry of the structure. CoII, NiII, ZnII cations have octahedral due to coordination number of these metals. Neighbouring chains were linked together to form a three‐dimensional network via hydrogen‐bonding between coordinated water molecule, amino atoms and O atoms of the bridging carboxylate groups. CuII complex was crystallized in the monoclinic space group P21, a = 8.4407(5) Å, b = 12.0976(5) Å, c = 10.2448(6) Å, V = 1041.03(10) Å3, Z = 2. Structures of the other metal complexes were similar to CuII complex, because of their spectroscopic studies have in agreement with each other. Copper complex has shown DNA like helix chain structure. Lastly, anti‐bacterial, anti‐microbial and anti‐fungal biological activities of complexes were investigated.  相似文献   

17.
The anodic oxidation of the carbon felt Carbonetcalon results in the formation of surface defects which serve as centers of strong adsorption of PdII, NiII, and CuII ions. The electrochemical reduction of adsorbed ions makes it possible to obtain metallic catalysts, which undergo multiple redox cycles without loss of metal. The catalysts are characterized by high dispersity of the reduced phase, high adsorption capacity with respect to hydrogen, and 100% selectivity in hydrogenation of acetophenone. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 81–85, January 1997  相似文献   

18.
Six organic–inorganic hybrid materials were synthesized by the in situ oxidation of neocuproine by using MoO3/Na2MoO4 as the catalyst in the presence of Cu(NO3)2. The crystal structures of Mo8‐Cu4‐PHEN and Mo8‐Cu2‐5(2PIC) are composed of [Mo8O26]4? polyoxometalate (POM) units, whereas the crystal structure of Mo6‐Cu‐COPHEN is composed of a [Mo6O19]2? POM unit; both POM units could be considered as the active form of the catalyst. Reaction of the hybrid materials with 1,3,5‐benzenetricarboxylic acid (BTC) resulted in the formation of two different coordination polymers (CPs) under different reaction conditions. These CPs, depending on their structural attributes, exhibit distinct differences in the adsorption of H2, CO2, and water. The use of 2‐methylpyridine instead of neocuproine does not give any oxidation products under the same reaction conditions due to the incorrect positioning of the methyl group with respect to the CuII center.  相似文献   

19.
A method for electrosynthesis of heteropolynuclear biquinoline-containing CuI and PdII complexes using sacrificial Cu and Pd anodes was developed. The sequence of anode dissolution (first Pd and then Cu) was important for the synthesis of the complex. The opposite sequence of dissolution resulted in oxidation of the initially formed CuI ions to CuII. The obtained CuI and PdII complexes with polymer ligands had high catalytic activity in the reaction of aryl halides with phenylacetylene giving rise to a C(sp2)-C(sp) bond. The yield of arylphenylacetylene in the presence of 0.1 mol.% of Pd catalyst in relation to the starting halide was 50–90% depending on the nature of the aryl halide.  相似文献   

20.
It is highly attractive but challenging to develop earth‐abundant electrocatalysts for energy‐saving electrolytic hydrogen generation. Herein, we report that Ni2P nanoarrays grown in situ on nickel foam (Ni2P/NF) behave as a durable high‐performance non‐noble‐metal electrocatalyst for hydrazine oxidation reaction (HzOR) in alkaline media. The replacement of the sluggish anodic oxygen evolution reaction with such the more thermodynamically favorable HzOR enables energy‐saving electrochemical hydrogen production with the use of Ni2P/NF as a bifunctional catalyst for anodic HzOR and cathodic hydrogen evolution reaction. When operated at room temperature, this two‐electrode electrolytic system drives 500 mA cm−2 at a cell voltage as low as 1.0 V with strong long‐term electrochemical durability and 100 % Faradaic efficiency for hydrogen evolution in 1.0 m KOH aqueous solution with 0.5 m hydrazine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号