首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Active and stable electrocatalysts made from earth‐abundant elements are key to water splitting for hydrogen production through electrolysis. The growth of NiSe nanowire film on nickel foam (NiSe/NF) in situ by hydrothermal treatment of NF using NaHSe as Se source is presented. When used as a 3D oxygen evolution electrode, the NiSe/NF exhibits high activity with an overpotential of 270 mV required to achieve 20 mA cm?2 and strong durability in 1.0 M KOH, and the NiOOH species formed at the NiSe surface serves as the actual catalytic site. The system is also highly efficient for catalyzing the hydrogen evolution reaction in basic media. This bifunctional electrode enables a high‐performance alkaline water electrolyzer with 10 mA cm?2 at a cell voltage of 1.63 V.  相似文献   

2.
Electrochemical water splitting can provide a promising avenue for sustainable hydrogen production. Highly efficient electrocatalysts toward the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are extremely important for the practical application of water splitting technology. Herein, a one-step annealing strategy is reported for the fabrication of a metal–organic framework-derived bifunctional self-supported electrocatalyst, which is composed of two-dimensional N-doped carbon-wrapped Ir-doped Ni nanoparticle composites supported on Ni foam (NiIr@N-C/NF). The resultant NiIr@N-C/NF displays excellent electrocatalytic performance in 1.0 m KOH, with low overpotentials of 32 mV at 10 mA cm−2 for the HER and 329 mV at 50 mA cm−2 for the OER. Particularly, the HER-OER bifunctional NiIr@N-C/NF needs only 1.50 V to yield 10 mA cm−2 for overall water splitting.  相似文献   

3.
《中国化学快报》2023,34(7):108016
The rational construction of electrocatalysts with desired features is significant but challenging for superior water splitting at high current density. Herein, amorphous CoNiS nanosheets are synthesized on nickel foam (NF) through a facile structure evolution strategy and present advanced performance at high current densities in water splitting. The high catalytic activity can be attributed to the sufficient active sites exposed by the flexible amorphous configuration. Moreover, the hydrophilicity and aerophobicity of a-CoNiS/NF promote surface wettability of the self-supporting electrode and avoid the aggregation of bubbles, which expedites the diffusion of electrolyte and facilitates the mass transfer. As a result, the optimized electrode demonstrates low overpotentials of 289 and 434 mV at 500 mA/cm2 under alkaline conditions for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Impressively, an electrolytic water splitting cell assembled by bifunctional a-CoNiS/NF operates with a low cell voltage of 1.46 V@10 mA/cm2 and reaches 1.79 V at 500 mA/cm2. The strategy sheds light on a competitive platform for the reasonable design of non-precious-metal electrocatalysts under high current density.  相似文献   

4.
The rational design of highly efficient bifunctional electrocatalysts for water splitting is extremely urgent for application in sustainable energy conversion processes to alleviate the energy crisis and environmental pollution. In this work, through simple deposition of layered double hydroxides (LDH) on Co3O4/NF (NF=nickel foam) nanosheets arrays, hierarchical Co3+-rich materials based on LDH-Co3O4/NF are prepared as highly active and stable electrocatalysts for water splitting. The NiFe-LDH-Co3O4/NF demonstrates excellent electrochemical activity with an overpotential of 214 mV for the OER and an overpotential of 162 mV for the HER at 10 mA cm−2. Such a performance is attributed to the optimized electronic states with a high concentration of Co3+, which improves the intrinsic activity, and the sheet-on-sheet hierarchical structure, which increases the number of active sites. The unique synchronous design of both the architectural and electronic structure of nanomaterials can simultaneously accelerate the reaction kinetics and provide a more convenient charge transfer path. Therefore, the strategy reported herein may open a new pathway for the design of excellent electrocatalysts for water splitting.  相似文献   

5.
Water electrolysis is a promising source of hydrogen; however, technological challenges remain. Intensive efforts have focused on developing highly efficient and earth‐abundant electrocatalysts for water splitting. An effective strategy is proposed, using a bifunctional tubular cobalt perselenide nanosheet electrode, in which the sluggish oxygen evolution reaction is substituted with anodic hydrazine oxidation so as to assist energy‐efficient hydrogen production. Specifically, this electrode produces a current density of 10 mA cm?2 at ?84 mV for hydrogen evolution and ?17 mV for hydrazine oxidation in 1.0 m KOH and 0.5 m hydrazine electrolyte. An ultralow cell voltage of only 164 mV is required to generate a current density of 10 mA cm?2 for 14 hours of stable water electrolysis.  相似文献   

6.
开发低成本、高活性且稳定的非贵金属催化剂是实现大规模电解水制氢的关键所在。在此,我们通过简便、合理的电沉积法在泡沫镍(NF)上构建了一种具备超薄二维纳米片形貌的高度非晶相Co1Fe1-P薄膜用于高效催化析氧反应(OER)。在1.0mol·L-1 KOH溶液中,所制备的Co1Fe1-P/NF催化剂在电流密度为10和100 mA·cm-2处的过电位分别为274.4和329.5 mV,Tafel斜率仅为 45.3 mV·dec-1,可以媲美商业 RuO2催化剂。此外,Co1Fe1-P/NF 催化剂在 10 mA·cm-2的 100 h 计时电压法测试和1 000次循环伏安法测试中均表现出卓越的催化稳定性。Co1Fe1-P/NF催化剂优秀的催化活性归因于其独特的形貌、高度非晶相结构提供的低能垒、优化的电子结构以及钴磷化物和铁磷化物的强协同效应。  相似文献   

7.
开发低成本、高活性且稳定的非贵金属催化剂是实现大规模电解水制氢的关键所在。在此,我们通过简便、合理的电沉积法在泡沫镍(NF)上构建了一种具备超薄二维纳米片形貌的高度非晶相Co1Fe1-P薄膜用于高效催化析氧反应(OER)。在1.0mol·L-1 KOH溶液中,所制备的Co1Fe1-P/NF催化剂在电流密度为10和100 mA·cm-2处的过电位分别为274.4和329.5 mV,Tafel斜率仅为45.3 mV·dec-1,可以媲美商业RuO2催化剂。此外,Co1Fe1-P/NF催化剂在10 mA·cm-2的100 h计时电压法测试和1 000次循环伏安法测试中均表现出卓越的催化稳定性。Co1Fe1-P/NF催化剂优秀的催化活性归因于其独特的形貌、高度非晶相结构提供的低能垒、优化的电子结构以及钴磷化物和铁磷化物的强协同效应。  相似文献   

8.
Noble‐metal‐free bimetal‐based electrocatalysts have shown high efficiency for water oxidation. Ni and/or Co in these electrocatalysts are essential to provide a conductive, high‐surface area and a chemically stable host. However, the necessity of Ni or Co limits the scope of low‐cost electrocatalysts. Herein, we report a hierarchical hollow FeV composite, which is Ni‐ and Co‐free and highly efficient for electrocatalytic water oxidation with low overpotential 390 mV (10 mA cm−2 catalytic current density), low Tafel slope of 36.7 mV dec−1, and a considerable durability. This work provides a novel and efficient catalyst, and greatly expands the scope of low‐cost Fe‐based electrocatalysts for water splitting without need of Ni or Co.  相似文献   

9.
The exploitation of efficient and stable water oxidation catalysts is a pressing challenge to solve the energy crisis. Herein, flower‐like CuCo2S4 microspheres were successfully synthesized and used as an effective water oxidation catalyst. CuCo2S4/NF (NF=nickel foam) affords electrocatalytic water oxidation activity, with a current density of 20 mA cm?2 at a low overpotential of 260 mV. The overpotential value is lower than that of benchmark RuO2/NF (overpotential of 340 mV at a current density of 20 mA cm?2). The water oxidation activity increases linearly before nonlinearly improving with increasing pH; this indicates that the substrate changes from water to hydroxyl. The CuCo2S4/NF catalyst is demonstrated to be a real water oxidation catalyst based on diverse experiments.  相似文献   

10.
The development of highly efficient, inexpensive, abundant and non-precious metal electrocatalysts is the lifeblood of the hydrogen production industry, especially the hydrogen production industry by electrolysis of water. A Fe-Co-S/NF bifunctional electrocatalyst with nanoflower-like structure was synthesized on three-dimensional porous nickel foam through one-step hydrothermal and one-step high-temperature sulfuration operations, and the material displays high-efficiency electrocatalytic performance. As a catalyst for the hydrogen evolution reaction, Fe-Co-S/NF can drive a current density of 10 mA/cm2 at an overpotential of 143 mV with a Tafel slope of 80.2 mV/dec. When it was used as an oxygen evolution reaction catalyst, it exhibits good OER reactivity with a low Tafel slope (82.6 mV/dec) and with requiring only 117 mV overpotential to drive current densities up to 50 mA/cm2. In addition, the Fe-Co-S/NF//Fe-Co-S/NF electrolytic cell was assembled, an electrolysis voltage of 1.64 V is required to drive a current density of 50 mA/cm2, which is one of the most active catalysts reported so far. This work indicates that the introduction of S, P and Se treating processes could effectively improve electrical conductivity of the material and enhance the catalytic activity of the material. This work offers an effective and convenient method for improving the morphology of the catalyst, increasing the surface area of the catalyst and developing high-efficiency and low-cost catalysts.  相似文献   

11.
《化学:亚洲杂志》2017,12(22):2956-2961
Developing efficient non‐noble metal and earth‐abundant electrocatalysts with tunable microstructures for overall water splitting is critical to promote clean energy technologies for a hydrogen economy. Herein, novel three‐dimensional (3D) flower‐like Ni2P composed of mesoporous nanoplates with controllable morphology and high surface area was prepared by a hydrothermal method and low‐temperature phosphidation as efficient electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Compared with the urchin‐like Nix Py , the 3D flower‐like Ni2P with a diameter of 5 μm presented an efficient and stable catalytic performance in 0.5 m H2SO4, with a small Tafel slope of 79 mV dec−1 and an overpotential of about 240 mV at a current density of 10 mA cm−2 with a mass loading density of 0.283 mg cm−2. In addition, the catalyst also exhibited a remarkable performance for the OER in 1.0 m KOH electrolyte, with an overpotential of 320 mV to reach a current density of 10 mA cm−2 and a small Tafel slope of 72 mV dec−1. The excellent catalytic performance of the as‐prepared Ni2P may be ascribed to its novel 3D morphology with unique mesoporous structure.  相似文献   

12.
Highly active and stable electrocatalysts for hydrogen generation from neutral‐pH water are highly desired, but very difficult to achieve. Herein we report a facile synthetic approach to cobalt nanocrystal assembled hollow nanoparticles (Co‐HNP), which serve as an electrocatalyst for hydrogen generation from neutral‐pH water. An electrode composed of Co‐HNP on a carbon cloth (CC) produces cathodic current densities of 10 and 100 mA cm?2 at overpotentials of ?85 mV and ?237 mV, respectively. The Co‐HNP/CC electrode retains its high activity after 20 h hydrogen generation at a high current density of 150 mA cm?2, indicating the superior activity and stability of Co‐HNP as electrocatalyst.  相似文献   

13.
Developing non-noble-metal oxygen evolution reaction(OER) electrocatalysts with high performance is critical to electrocatalytic water splitting. In this work, we fabricated Co Fe-layered double hydroxide(LDH) nanowire arrays on graphite felt(Co Fe-LDH/GF) via a hydrothermal method. The Co Fe-LDH/GF, as a robust integrated 3 D OER anode, exhibits excellent catalytic activity with the need of low overpotential of 252 and 285 m V to drive current densities of 10 and 100 m A/cm2 in 1.0 mol/L KOH, r...  相似文献   

14.
The development of high‐efficiency electrocatalysts for large‐scale water splitting is critical but also challenging. In this study, a hierarchical CoMoSx chalcogel was synthesized on a nickel foam (NF) through an in situ metathesis reaction and demonstrated excellent activity and stability in the electrocatalytic hydrogen evolution reaction and oxygen evolution reaction in alkaline media. The high catalytic activity could be ascribed to the abundant active sites/defects in the amorphous framework and promotion of activity through cobalt doping. Furthermore, the superhydrophilicity and superaerophobicity of micro‐/nanostructured CoMoSx/NF promoted mass transfer by facilitating access of electrolytes and ensuring fast release of gas bubbles. By employing CoMoSx/NF as bifunctional electrocatalysts, the overall water splitting device delivered a current density of 500 mA cm?2 at a low voltage of 1.89 V and maintained its activity without decay for 100 h.  相似文献   

15.
《中国化学快报》2020,31(9):2469-2472
The development of efficient and cost-effective electrocatalysts toward anodic oxygen evolution reaction (OER) is crucial for the commercial application of electrochemical water splitting. As the most promising electrocatalysts, the OER performances of nickel-iron-based materials can be further improved by introducing metalloid elements to modify their electron structures. Herein, we developed an efficient hybrid electrocatalyst with nickel-iron boride (NiFeB) as core and amorphous nickel-iron borate (NiFeBi) as shell (NiFeB@NiFeBi) via a simple aqueous reduction. The obtained NiFeB@NiFeBi exhibits a small overpotential of 237 mV at 10 mA/cm2 and Tafel slope of 57.65 mV/dec in 1.0 mol/L KOH, outperforming most of the documented precious-metal-free based electrocatalysts. Benefiting from the in situ formed amorphous NiFeBi layer, it shows excellent stability toward the oxygen evolution reaction (OER). These findings might provide a new way to design advanced precious-metal-free electrocatalysts for OER and the application of electrochemical water splitting.  相似文献   

16.
《中国化学快报》2022,33(8):4003-4007
Developing efficient and inexpensive OER electrocatalysts is a challenge for overall water splitting. Herein, the heterostructured FeCo LDH@NiCoP/NF nanowire arrays with high performance were rationally designed and prepared using an interface engineering strategy. Benefitting from the special heterostructure between FeCo LDH and NiCoP, the as-synthesized FeCo LDH@NiCoP/NF electrocatalyst exhibits outstanding OER performance with an exceptionally low overpotential of 206 mV to achieve 20 mA/cm2 current density in an alkaline electrolyte. Importantly, a cell constructed using the FeCo LDH@NiCoP/NF electrocatalyst as cathode and anode just needs a voltage of 1.48 V at 10 mA/cm2, and shows excellent stability over 80 h. Experimental and theoretical results verified that the introduction of NiCoP efficiently regulates the electronic structure of FeCo LDH, which tremendously boosts the conductivity and intrinsic catalytic activity of FeCo LDH@NiCoP/NF electrocatalyst. The present work provides guidance for the preparation of other efficient and cheap electrocatalytic materials.  相似文献   

17.
It is essential to develop efficient electrocatalysts to generate hydrogen from water electrolysis for hydrogen economy. In this work, platinum(Pt) and nickel(Ni) co-doped porous carbon nanofibers(Pt/NiPCNFs) with low Pt content were prepared via an electrospinning, carbonization and galvanic replacement reaction. Because of the high electrical conductivity, abundant electrochemical active sites and synergistic effect between Pt and Ni nanoparticles, the optimized Pt/Ni-PCNFs catalyst shows an e...  相似文献   

18.
《中国化学快报》2022,33(9):4367-4374
Rational design and building of high efficiency, secure and inexpensive electrocatalyst is a pressing demand and performance to promote sustainable improvement of hydrogen energy. The bifunctional electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution response (HER) with high catalytic performance and steadiness in the equal electrolyte are extra treasured and meaningful. Herein, a unique three-dimensional (3D) structure electrocatalyst for NiCo2S4 growing on the flower-like NiFeP was designed and synthesized in this study. The results show that the flower-like NiCo2S4/NiFeP/NF composite electrocatalyst has large specific surface area, appropriate electrical conductivity, and greater lively websites uncovered in the three-dimensional structure, and affords extraordinary electrocatalytic overall performance for the ordinary water splitting. In alkaline solution, the OER and HER overpotentials of NiCo2S4/NiFeP/NF only need 293 mV and 205 mV overpotential to provide the current densities of 100 mA/cm2 and 50 mA/cm2, respectively. This high electrocatalytic activity exceeds the catalytic activity of most nickel-iron based electrocatalysts for OER and HER process. Accordingly, the optimized NiCo2S4/NiFeP/NF sample has higher stability (24 h) at 1.560 and 10 mA/cm2, which extensively speeds up the overall water splitting process. In view of the above performance, this work offers a fine approach for the further improvement of low fee and excessive effectivity electrocatalyst.  相似文献   

19.
Developing noble‐metal‐free, earth‐abundant, highly active, and stable electrocatalysts with high efficiency for both hydrogen and oxygen evolution reactions is of great importance for the development of overall water‐splitting devices, but still remains a challenging issue. Herein, a 3D heterostructured NiC/MoC/NiMoO4 electrocatalyst was prepared through a facile synthetic procedure. The electrocatalyst shows a superior catalytic activity and stability toward the hydrogen and oxygen evolution reactions. The optimized NiC/MoC/NiMoO4 catalyst presents low overpotentials of 68 and 280 mV to reach a current density of 10 mA cm?2 in 1.0 m KOH for the hydrogen and oxygen evolution reactions, respectively. Assembled as an electrolyzer for overall water splitting, such a heterostructure shows quite a low cell voltage of 1.52 V at 10 mA cm?2 and remarkable stability for more than 20 h. This work provides a facile but efficient approach for the design and preparation of highly efficient bifunctional and self‐supported heterostructured electrocatalysts that can serve as promising candidates in electrochemical energy storage and conversion.  相似文献   

20.
Developing highly active, stable and robust electrocatalysts based on earth‐abundant elements for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is important for many renewable energy conversion processes. Herein, NixCo3‐xO4 nanoneedle arrays grown on 3D porous nickel foam (NF) was synthesized as a bifunctional electrocatalyst with OER and HER activity for full water splitting. Benefiting from the advantageous structure, the composite exhibits superior OER activity with an overpotential of 320 mV achieving the current density of 10 mA cm?2. An exceptional HER activity is also acquired with an overpotential of 170 mV at the current density of 10 mA cm?2. Furthermore, the catalyst also shows the superior activity and stability for 20 h when used in the overall water splitting cell. Thus, the hierarchical 3D structure composed of the 1D nanoneedle structure in NixCo3‐xO4/NF represents an avenue to design and develop highly active and bifunctional electrocatalysts for promising energy conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号