首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Well‐defined three‐dimensional (3D) PdCu bimetallic alloy nanosponges (BANs) with highly porous structure was reported through a rapid and general strategy. Significantly, the as‐prepared PdCu BANs exhibited greatly enhanced activity and stability than commercial Pd/C catalyst towards ethanol electrooxidation in an alkaline medium. Pd1Cu1 shows higher active area and better electrocatalytic activity than Pd1Cu2 and Pd2Cu1. This result demonstrates the potential of applying these PdCu BANs as effective electrocatalysts for direct alcohol fuel cells (DAFCs).  相似文献   

2.
Low cost, high activity and selectivity, convenient separation, and increased reusability are the main requirements for noble‐metal‐nanocatalyst‐catalyzed reactions. Despite tremendous efforts, developing noble‐metal nanocatalysts to meet the above requirements remains a significant challenge. Here we present a general strategy for the preparation of strongly coupled Fe3O4 and palladium nanoparticles (PdNPs) to graphene sheets by employing polyethyleneimine as the coupling linker. Transmission electron microscopic images show that Pd and Fe3O4 nanoparticles are highly dispersed on the graphene surface, and the mean particle size of Pd is around 3 nm. This nanocatalyst exhibits synergistic catalysis by Pd nanoparticles supported on reduced graphene oxide (rGO) and a tertiary amine of polyethyleneimine (Pd/Fe3O4/PEI/rGO) for the Tsuji–Trost reaction in water and air. For example, the reaction of ethyl acetoacetate with allyl ethyl carbonate afforded the allylated product in more than 99 % isolated yield, and the turnover frequency reached 2200 h?1. The yield of allylated products was 66 % for Pd/rGO without polyethyleneimine. The catalyst could be readily recycled by a magnet and reused more than 30 times without appreciable loss of activity. In addition, only about 7.5 % of Pd species leached off after 20 cycles, thus rendering this catalyst safer for the environment.  相似文献   

3.
Crystal phase engineering is a powerful strategy for regulating the performance of electrocatalysts towards many electrocatalytic reactions, while its impact on the nitrogen electroreduction has been largely unexplored. Herein, we demonstrate that structurally ordered body‐centered cubic (BCC) PdCu nanoparticles can be adopted as active, selective, and stable electrocatalysts for ammonia synthesis. Specifically, the BCC PdCu exhibits excellent activity with a high NH3 yield of 35.7 μg h?1 mg?1cat, Faradaic efficiency of 11.5 %, and high selectivity (no N2H4 is detected) at ?0.1 V versus reversible hydrogen electrode, outperforming its counterpart, face‐centered cubic (FCC) PdCu, and most reported nitrogen reduction reaction (NRR) electrocatalysts. It also exhibits durable stability for consecutive electrolysis for five cycles. Density functional theory calculation reveals that strong orbital interactions between Pd and neighboring Cu sites in BCC PdCu obtained by structure engineering induces an evident correlation effect for boosting up the Pd 4d electronic activities for efficient NRR catalysis. Our findings open up a new avenue for designing active and stable electrocatalysts towards NRR.  相似文献   

4.
Well distributed Pd‐Cu bimetallic alloy nanoparticles supported on amine‐terminated ionic liquid functional three‐dimensional graphene (3D IL‐rGO/Pd‐Cu) as an efficient catalyst for Suzuki cross‐coupling reaction has been prepared via a facile synthetic method. The introduction of IL‐NH2 cations on the surface of graphene sheets can effectively avoid the re‐deposition of graphene sheets, allowing the catalyst to be reused up to 10 cycles. The addition of Cu not only saves cost but also ensures high catalytic efficiency. It is worthy to note that the catalyst 3D IL‐rGO/Pd2.5Cu2.5 can efficiently catalyze the Suzuki cross‐coupling reaction with the yield up to 100% in 0.25 h, almost one‐fold higher than that by the pristine IL‐rGO/Pd2.5 catalyst (52%). The Powder X‐Ray Diffraction (XRD), combining energy dispersive X‐ray spectroscopy (EDS) mapping results confirm the existence and distribution of Pd and Cu in the bimetallic nanoparticles. The transmission electron microscopy (TEM) reveals the nanoparticle size with an average diameter of 3.0 ± 0.5 nm. X‐ray photoelectron spectroscopy (XPS) analysis proved the presence of electron transfer from Cu to Pd upon alloying. Such alloying‐induced electronic modification of Pd‐Cu alloy and 3D ionic liquid functional graphene with large specific surface area both accounted for the catalytic enhancement.  相似文献   

5.
The selective hydrogenation of C≡C to C=C bonds is an important step, yet remains to be a great challenge in chemical industry. In this study, we have revealed the influence of Pd deposition pH value on the catalytic performance of Pd-CuO/SiO2 catalyst for the semi-hydrogenation of 2-methyl-3-butyn-2-ol(MBY). Trace amount of Pd(about 500 ppm) was loaded via deposition-reduction method on CuO/SiO2 support by using H2PdCl4 solution as precursor and NaBH<...  相似文献   

6.
Exploiting high‐performance and inexpensive electrocatalysts for methanol electro‐oxidation is conductive to promoting the commercial application of direct methanol fuel cells. Here, we present a facile synthesis of echinus‐like PdCu nanocrystals (NCs) via a one‐step and template‐free method. The echinus‐like PdCu NCs possess numerous straight and long branches which can provide abundant catalytic active sites. Owing to the novel nanoarchitecture and electronic effect of the PdCu alloy, the echinus‐like PdCu NCs display high electrocatalytic performance toward methanol oxidation reaction in an alkaline medium. The mass activity of echinus‐like PdCu NCs is 1202.1 mA mgPd?1, which is 3.7 times that of Pd/C catalysts. In addition, the echinus‐like structure, as a kind of three‐dimensional self‐supported nanoarchitecture, endows PdCu NCs with significantly enhanced stability and durability. Hence, the echinus‐like PdCu NCs hold prospect of being employed as electrocatalysts for direct alcohol fuel cells.  相似文献   

7.
The challenge in the electrochemical reduction of aqueous carbon dioxide is in designing a highly selective, energy‐efficient, and non‐precious‐metal electrocatalyst that minimizes the competitive reduction of proton to form hydrogen during aqueous CO2 conversion. A non‐noble metal electrocatalyst based on a copper‐indium (Cu‐In) alloy that selectively converts CO2 to CO with a low overpotential is reported. The electrochemical deposition of In on rough Cu surfaces led to Cu‐In alloy surfaces. DFT calculations showed that the In preferentially located on the edge sites rather than on the corner or flat sites and that the d‐electron nature of Cu remained almost intact, but adsorption properties of neighboring Cu was perturbed by the presence of In. This preparation of non‐noble metal alloy electrodes for the reduction of CO2 provides guidelines for further improving electrocatalysis.  相似文献   

8.
Catalytic CO oxidation by molecular O2 is an important model reaction in both the condensed phase and gas‐phase studies. Available gas‐phase studies indicate that noble metal is indispensable in catalytic CO oxidation by O2 under thermal collision conditions. Herein, we identified the first example of noble‐metal‐free heteronuclear oxide cluster catalysts, the copper–vanadium bimetallic oxide clusters Cu2VO3–5? for CO oxidation by O2. The reactions were characterized by mass spectrometry, photoelectron spectroscopy, and density functional calculations. The dynamic nature of the Cu?Cu unit in terms of the electron storage and release is the driving force to promote CO oxidation and O2 activation during the catalysis.  相似文献   

9.
The single copper atom doped clusters CuAl4O7–9? can catalyze CO oxidation by O2. The CuAl4O7–9? clusters are the first group of experimentally identified noble‐metal free single atom catalysts for such a prototypical reaction. The reactions were characterized by mass spectrometry and density functional theory calculations. The CuAl4O9CO? is much more reactive than CuAl4O9? in the reaction with CO to generate CO2. One adsorbed CO is crucial to stabilize Cu of CuAl4O9? around +I oxidation state and promote the oxidation of another CO. The widely emphasized correlation between the catalytic reactivity of CO oxidation and Cu oxidation state can be understood at the strictly molecular level. The remarkable difference between Cu catalysis and noble‐metal catalysis was discussed.  相似文献   

10.
Metallic palladium (Pd) electrocatalysts for oxygen reduction and hydrogen peroxide (H2O2) oxidation/reduction are prepared via electroplating on a gold metal substrate from dilute (5 to 50 mM) aqueous K2PdCl4 solution. The best Pd catalyst layer possessing dendritic nanostructures is formed on the Au substrate surface from 50 mM Pd precursor solution (denoted as Pd‐50) without any additional salt, acid or Pd templating chemical species. The Pd‐50 consisted of nanostructured dendrites of polycrystalline Pd metal and micropores within the dendrites which provide high catalyst surface area and further facilitate reactant mass transport to the catalyst surface. The electrocatalytic activity of Pd‐50 proved to be better than that of a commercial Pt (Pt/C) in terms of lower overpotential for the onset and half‐wave potentials and a greater number of electrons (n) transferred. Furthermore, amperometric it curves of Pd‐50 for H2O2 electrochemical reaction show high sensitivities (822.2 and ?851.9 µA mM?1 cm?2) and low detection limits (1.1 and 7.91 µM) based on H2O2 oxidation H2O2 reduction, respectively, along with a fast response (<1 s).  相似文献   

11.
A surface‐restructuring strategy is presented that involves self‐cleaning Cu catalyst electrodes with unprecedented catalytic stability toward CO2 reduction. Under the working conditions, the Pd atoms pre‐deposited on Cu surface induce continuous morphological and compositional restructuring of the Cu surface, which constantly refreshes the catalyst surface and thus maintains the catalytic properties for CO2 reduction to hydrocarbons. The Pd‐decorated Cu electrode can catalyze CO2 reduction with relatively stable selectivity and current density for up to 16 h, which is one of the best catalytic durability performances among all Cu electrocatalysts for effective CO2 conversion to hydrocarbons. The generality of this approach of utilizing foreign metal atoms to induce surface restructuring toward stabilizing Cu catalyst electrodes against deactivation by carbonaceous species accumulation in CO2 reduction is further demonstrated by replacing Pd with Rh.  相似文献   

12.
The sluggish kinetics of the oxygen reduction reaction (ORR) at the cathodes of fuel cells significantly hampers fuel cell performance. Therefore, the development of high‐performance, non‐precious‐metal catalysts as alternatives to noble metal Pt‐based ORR electrocatalysts is highly desirable for the large‐scale commercialization of fuel cells. TiO2‐grafted copper complexes deposited on multiwalled carbon nanotubes (CNTs) form stable and efficient electrocatalysts for the ORR. The optimized catalyst composite CNTs@TiO2–ZA–[Cu(phen)(BTC)] shows surprisingly high selectivity for the 4 e? reduction of O2 to water (approximately 97 %) in alkaline solution with an onset potential of 0.988 V vs. RHE, and demonstrates superior stability and excellent tolerance for the methanol crossover effect in comparison to a commercial Pt/C catalyst. The copper complexes were grafted onto the surface of TiO2 through coordination of an imidazole‐containing ligand, zoledronic acid (ZA), which binds to TiO2 through its bis‐phosphoric acid anchoring group. Rational optimization of the copper catalyst’s ORR performance was achieved by using an electron‐deficient ligand, 5‐nitro‐1,10‐phenanthroline (phen), and bridging benzene‐1,3,5‐tricarboxylate (BTC). This facile approach to the assembly of copper catalysts on TiO2 with rationally tuned ORR activity will have significant implications for the development of high‐performance, non‐precious‐metal ORR catalysts.  相似文献   

13.
In this work, a 304 stainless steel (SS) was anodized to prepare nanoporous SS (NPSS) with an average size of about 75 nm and then filled with copper (Cu/NPSS) using pulsed electrodeposition method. Afterward, a nanostructural Pt and Pd film was deposited by galvanic replacement (GR) on the Cu/NPSS to prepare modified electrode (PtPd/Cu/NPSS) for hydrogen evolution reaction (HER) and formic acid electrooxidation (FAO). The electrocatalytic activity of the modified electrode and its structural characterization have been studied by voltammetric methods, electrochemical impedance spectroscopy (EIS), inductively coupled plasma optical emission spectrometry (ICP-OES), and field emission scanning electron microscopy (FESEM). The results show that the nanostructural Pt1Pd1/Cu/NPSS composition, with low Pt loading and suitable stability, has a good electrocatalytic performance toward HER (EOnset = + 12 mV vs. NHE) and FAO (EOnset = ?180 mV vs. NHE). For HER observed a high mass activity of noble metals (87.54 mA cm?2μg Pd+Pt ?1 ) in comparison with Pt deposited Cu/NPSS (41.5 mA cm?2 μg Pt ?1 ) at the same applied potential of ? 0.25 V versus NHE. Also, the fabricated electrocatalysts with more electrochemically active surface area in comparison with Pd/Cu/NPSS and Pt/Cu/NPSS revealed more resisting to the poisoning components and good stability for FAO.  相似文献   

14.
This study describes the synthesis of PdCu, PdCu/reduced graphene oxide and PtPdCu nanoparticle thin films via a simple reduction of organometallic precursors including [PtCl2(cod)] and [PdCl2(cod)] (cod = cis ,cis ‐1,5‐cyclooctadiene) complexes, in the presence of [Cu(acac)2] (acac = acetylacetonate) complex at toluene–water interface. The structure and morphology of the thin films were characterized using energy‐dispersive analysis of X‐rays, X‐ray diffraction and transmission electron microscopy techniques. Our studies show that all of these nanoparticles are suitable for the Suzuki–Miyaura coupling (SMC) reaction in water. PtPdCu and PdCu thin films showed higher catalytic activity compared to Pd thin film in the SMC reaction due to the appropriate interaction among palladium, platinum and copper metals.  相似文献   

15.
We report the synthesis and characterization of new NixRu1?x (x=0.56–0.74) alloy nanoparticles (NPs) and their catalytic activity for hydrogen release in the ammonia borane hydrolysis process. The alloy NPs were obtained by wet‐chemistry method using a rapid lithium triethylborohydride reduction of Ni2+ and Ru3+ precursors in oleylamine. The nature of each alloy sample was fully characterized by TEM, XRD, energy dispersive X‐ray spectroscopy (EDX), and X‐ray photoelectron spectroscopy (XPS). We found that the as‐prepared Ni–Ru alloy NPs exhibited exceptional catalytic activity for the ammonia borane hydrolysis reaction for hydrogen release. All Ni–Ru alloy NPs, and in particular the Ni0.74Ru0.26 sample, outperform the activity of similar size monometallic Ni and Ru NPs, and even of Ni@Ru core‐shell NPs. The hydrolysis activation energy for the Ni0.74Ru0.26 alloy catalyst was measured to be approximately 37 kJ mol?1. This value is considerably lower than the values measured for monometallic Ni (≈70 kJ mol?1) and Ru NPs (≈49 kJ mol?1), and for Ni@Ru (≈44 kJ mol?1), and is also lower than the values of most noble‐metal‐containing bimetallic NPs reported in the literature. Thus, a remarkable improvement of catalytic activity of Ru in the dehydrogenation of ammonia borane was obtained by alloying Ru with a Ni, which is a relatively cheap metal.  相似文献   

16.
Developing highly efficient and low‐cost photocatalysts for overall water splitting has long been a pursuit for converting solar power into clean hydrogen energy. Herein, we demonstrate that a nonstoichiometric nickel–cobalt double hydroxide can achieve overall water splitting by itself upon solar light irradiation, avoiding the consumption of noble‐metal co‐catalysts. We employed an intensive laser to ablate a NiCo alloy target immersed in alkaline solution, and produced so‐called L‐NiCo nanosheets with a nonstoichiometric composition and O2?/Co3+ ions exposed on the surface. The nonstoichiometric composition broadens the band gap, while O2? and Co3+ ions boost hydrogen and oxygen evolution, respectively. As such, the photocatalyst achieves a H2 evolution rate of 1.7 μmol h?1 under AM 1.5G sunlight irradiation and an apparent quantum yield (AQE) of 1.38 % at 380 nm.  相似文献   

17.
Monodisperse bimetallic Pd–Cu nanoparticles with controllable size and composition were synthesized by a one‐step multiphase ethylene glycol (EG) method. Adjusting the stoichiometric ratio of the Pd and Cu precursors afforded nanoparticles with different compositions, such as Pd85–Cu15, Pd56–Cu44, and Pd39–Cu61. The nanoparticles were separated from the solution mixture by extraction with non‐polar solvents, such as n‐hexane. Monodisperse bimetallic Pd–Cu nanoparticles with narrow size‐distribution were obtained without the need for a size‐selection process. Capping ligands that were bound to the surface of the particles were removed through heat treatment when the as‐prepared nanoparticles were loaded onto a Vulcan XC‐72 carbon support. Supported bimetallic Pd–Cu nanoparticles showed enhanced electrocatalytic activity towards methanol oxidation compared with supported Pd nanoparticles that were fabricated according to the same EG method. For a bimetallic Pd–Cu catalyst that contained 15 % Cu, the activity was even comparable to the state‐of‐the‐art commercially available Pt/C catalysts. A STEM‐HAADF study indicated that the formation of random solid‐solution alloy structures in the bimetallic Pd85–Cu15/C catalysts played a key role in improving the electrochemical activity.  相似文献   

18.
Associating a metal‐based catalyst to a carbon‐based nanomaterial is a promising approach for the production of solar fuels from CO2. Upon appending a CoII quaterpyridine complex [Co(qpy)]2+ at the surface of multi‐walled carbon nanotubes, CO2 conversion into CO was realized in water at pH 7.3 with 100 % catalytic selectivity and 100 % Faradaic efficiency, at low catalyst loading and reduced overpotential. A current density of 0.94 mA cm?2 was reached at ?0.35 V vs. RHE (240 mV overpotential), and 9.3 mA cm?2 could be sustained for hours at only 340 mV overpotential with excellent catalyst stability (89 095 catalytic cycles in 4.5 h), while 19.9 mA cm?2 was met at 440 mV overpotential. Such a hybrid material combines the high selectivity of a homogeneous molecular catalyst to the robustness of a heterogeneous material. Catalytic performances compare well with those of noble‐metal‐based nano‐electrocatalysts and atomically dispersed metal atoms in carbon matrices.  相似文献   

19.
PdCu/C (XC-72) electrocatalyst was synthesized by a chemical reduction method using ethylene glycol as reaction media, polyvinylpyrrolidone as surfactant and sodium borohydride as reducing agent. Vulcan carbon XC-72 was employed as support and added through the PdCu synthesis procedure; further, Pd commercial (Pd/C, 20% ETEK) was used for comparison purposes. Physicochemical characterization consisted in XRD, XRF, EDS and TEM analyses. TEM micrographs showed the presence of semi-spherical nanoparticles with a particle distribution around 6 nm. X-ray diffraction patterns showed the typical face-centered cubic structure of Pd materials for commercial Pd and revealed a low crystallinity for PdCu/C. The XRF analysis showed a mass metal composition of 81% Pd and 19% Cu. EDS analysis was made to single particles exhibiting an average elemental composition of 92% Pd and 8% Cu. The electrocatalytic activity of PdCu/C and Pd/C was evaluated by cyclic voltammetry experiments toward ethylene glycol and glycerol oxidations using three concentrations (0.1, 1 and 3 M) and 0.3 M KOH as electrolyte. These experiments exhibited the superior performance of PdCu compared with commercial Pd by means of current densities associated to the electro-oxidation reactions where values at least 3-fold higher than Pd/C were found.  相似文献   

20.
An efficient procedure based on arginine‐modified Fe3O4@carbon magnetic nanoparticles (FCA MNPs) with highly dispersed copper nanoparticles (Cu NPs) and 92.8 ppm of Pd is reported for room temperature Suzuki reaction. For enhancing the activity of this Cu‐based heterogeneous catalyst, special arginine amino acid as a ligand with high content of heteroatoms was immobilized onto the Fe3O4@carbon MNPs to increase the electron density. Cu(II) ions were then loaded on the surface of the FCA MNPs and reduced to achieve uniformly dispersed Cu NPs. An aqueous mixture of metal hydroxides such as KOH, Ba(OH)2, Ca(OH)2, Mg(OH)2 as a green, non‐toxic and basic medium was used for the Suzuki reaction at room temperature. This catalyst could also be recovered and reused with no loss of activity over six successful runs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号