首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   8篇
  国内免费   1篇
化学   83篇
力学   4篇
数学   8篇
物理学   14篇
  2023年   2篇
  2022年   2篇
  2021年   8篇
  2020年   11篇
  2019年   7篇
  2018年   5篇
  2017年   3篇
  2016年   12篇
  2015年   3篇
  2014年   4篇
  2013年   8篇
  2012年   11篇
  2011年   9篇
  2010年   6篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   4篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
排序方式: 共有109条查询结果,搜索用时 234 毫秒
1.
Porous networks of Pt nanoparticles interlinked by bifunctional organic ligands have shown high potential as catalysts in micro-machined hydrogen gas sensors. By varying the ligand among p-phenylenediamine, benzidine, 4,4‘‘-diamino-p-terphenyl, 1,5-diaminonaphthalene, and trans-1,4-diaminocyclohexane, new variants of such networks were synthesized. Inter-particle distances within the networks, determined via transmission electron microscopy tomography, varied from 0.8 to 1.4 nm in accordance with the nominal length of the respective ligand. While stable structures with intact and coordinatively bonded diamines were formed with all ligands, aromatic diamines showed superior thermal stability. The networks exhibited mesoporous structures depending on ligand and synthesis strategy and performed well as catalysts in hydrogen gas microsensors. They demonstrate the possibility of deliberately tuning micro- and mesoporosity and thereby transport properties and steric demands by choice of the right ligand also for other applications in heterogeneous catalysis.  相似文献   
2.
Journal of Thermal Analysis and Calorimetry - Thermal microscale gas flow was simulated into a coplanar microchannel was simulated at a broad range of Knudsen numbers. Attempts were made to improve...  相似文献   
3.
We report a Cu-based metal–organic framework (MOF) decorated by CuO nanostructures as an efficient catalyst for the oxygen evolution reaction (OER). MIL-53(Cu) was synthesized by a hydrothermal approach using 1,4-bezenedicarboxylic acid as organic precursor and further annealed at 300°C to form CuO nanostructures on its surface. The produced electrocatalyst, CuO@MIL-53(Cu), was characterized using various techniques. Under alkaline conditions, the developed electrocatalyst exhibited an overpotential of 801 and 336 mV versus RHE at 10 and 1 mA cm−2, respectively. The reproducibility of the catalytic performance was validated using several electrodes. It was confirmed that the CuO hair-like nanostructures grown on MIL-53(Cu) using thermal treatment exhibit high OER activity, good kinetics and durability. CuO@MIL-53(Cu) is an economic noble-metal-free OER electrocatalyst. It has potential for application as anode material for sustainable energy technologies like batteries, fuel cells and water electrolysis.  相似文献   
4.
The new inorganic–organic hybrids based on SO3H‐functionalized ionic liquids (ILs) and Keggin‐type heteropoly acids (H3PW12O40, H3PMo12O40, and H4SiW12O40; HPAs) are prepared and characterized by FT‐IR, NMR, XRD, CV, SEM/EDX, ICP‐OES, BJH and UV. Different molecular structures according to the different inorganic part were also proved. Potentiometric titration showed a good relationship between catalytic activity and acidity of the catalysts. Electrochemical aspects showed electron transfer ability of the compounds. For understanding catalytic activities of the HPA‐IL hybrids in N‐formylation reaction, effect of catalyst composition, substrate, and reaction conditions were studied. The best SO3H‐functionalized ionic liquid catalyst was readily recovered and reused for four runs. Easy preparation of the catalyst, simple and easy work‐up, mild reaction conditions, low cost, excellent yields and short reaction times are the key features of this work.  相似文献   
5.
Allium saralicum R.M. Fritsch has been used in Iranian traditional medicine as a remedial supplement for microbial diseases. This paper reports the green synthesis, chemical characterization and antioxidant, cytotoxic, antibacterial and antifungal properties of silver nanoparticles obtained using aqueous extract of A. saralicum leaves. In this synthesis, no surfactants or stabilizers were used. For characterization, UV–visible spectroscopy, transmission electron microscopy, X‐ray diffraction, energy‐dispersive X‐ray spectroscopy and field emission scanning electron microscopy were used. 2,2‐Diphenyl‐1‐picrylhydrazyl was used in experiments to assess the antioxidant potential of the silver nanoparticles, which revealed an impressive prevention in comparison with butylated hydroxytoluene. The synthesized silver nanoparticles at low doses (1–250 μg dl?1) did not show marked cytotoxic activity (against cervical cancer cells (Hela), breast cancer cells (MCF‐7) and human embryonic kidney cells (HEK‐293)). Agar diffusion tests were applied to determine the antibacterial and antifungal characteristics. Compared with all standard antimicrobials, the silver nanoparticles showed higher antibacterial and antifungal activities (p ≤ 0.01). Also, the silver nanoparticles inhibited the growth of all bacteria and fungi at concentrations of 31–250 μg ml?1, and destroyed them at concentrations of 31–500 μg ml?1 (p ≤ 0.01). Because the silver nanoparticles obtained using aqueous extract of A. saralicum leaves have antioxidant, non‐cytotoxic, antifungal and antibacterial potentials, they can be used as a medical supplement or drug.  相似文献   
6.
In the present study, the synthesis of mordenite zeolite/MIL‐101(Cr) metal–organic framework (MOF) composite [MOR/MIL‐101(Cr)] using the ship in a bottle method was suggested. The properties of prepared composite and individual MOF and MOR zeolite were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption–desorption measurement, and thermogravimetric analysis (TGA). The XRD results indicated diffraction peaks for each compound (MOR and MOF) in composite. The SEM and TEM images showed the formation of plates MOR (with size of 2.5 × 3 μm) along with spherical particles MIL‐101. The Brunauer–Emmett–Teller results showed that the surface area of the composite was smaller than individual MOF and MOR zeolite. Based on TGA plots, the hybrid zeolite/MOF composite was more thermally stable compared with the isolated MIL‐101(Cr). The composite was functionalized by post‐synthetic modification to obtain acid–base bifunctionality (H‐MOR/MIL‐101‐ED) for the synthesis of chromene derivatives. The acidity from framework Al‐O(H)‐Si sites in MOR and basicity from amine groups in MIL‐101 were obtained by post‐synthetic modification.  相似文献   
7.
8.
A very sensitive and selective flow injection on-line determination method of thorium (IV) after preconcentration in a minicolumn having XAD-4 resin impregnated with N-benzoylphenylhydroxylamine is described. Thorium (IV) was selectively adsorbed from aqueous solution of pH 4.5 in a minicolumn at a flow rate of 13.6 mL min?1, eluted with 3.6 mol dm?3 HCl (5.6 mL min?1), mixed with arsenazo-III (0.05% in 3.6 mol dm?3 HCl stabilized with 1% Triton X-100, 5.6 mL min?1) at confluence point and taken to the flow through cell of spectrophotometer where its absorbance was measured at 660 nm. Peak height was used for data analyses. The preconcentration factors obtained were 32 and 162, detection limits of 0.76 and 0.150 ??g L?1, sample throughputs of 40 and 11 h?1 for preconcentration times of 60 and 300 s, respectively. The tolerance levels for Zr(IV) and U(VI) metal ions is increased to 50-folds higher concentration to Th(IV). The proposed method was applied on different spiked tap water, sea water and biological sample and good recovery was obtained. The method was also applied on certified reference material IAEA-SL1 (Lake Sediment) for the determination of thorium and the results were in good agreement with the reported value.  相似文献   
9.
Miniaturization and acceleration of synthetic chemistry is an emerging area in pharmaceutical, agrochemical, and materials research and development. Herein, we describe the synthesis of iminopyrrolidine-2-carboxylic acid derivatives using chiral glutamine, oxo components, and isocyanide building blocks in an unprecedented Ugi-3-component reaction. We used I-DOT, a positive-pressure-based low-volume and non-contact dispensing technology to prepare more than 1000 different derivatives in a fully automated fashion. In general, the reaction is stereoselective, proceeds in good yields, and tolerates a wide variety of functional groups. We exemplify a pipeline of fast and efficient nanomole-scale scouting to millimole-scale synthesis for the discovery of a useful novel reaction with great scope.  相似文献   
10.
DNA-encoded combinatorial synthesis provides efficient and dense coverage of chemical space around privileged molecular structures. The indole side chain of tryptophan plays a prominent role in key, or “hot spot”, regions of protein–protein interactions. A DNA-encoded combinatorial peptoid library was designed based on the Ugi four-component reaction by employing tryptophan-mimetic indole side chains to probe the surface of target proteins. Several peptoids were synthesized on a chemically stable hexathymidine adapter oligonucleotide “hexT”, encoded by DNA sequences, and substituted by azide-alkyne cycloaddition to yield a library of 8112 molecules. Selection experiments for the tumor-relevant proteins MDM2 and TEAD4 yielded MDM2 binders and a novel class of TEAD-YAP interaction inhibitors that perturbed the expression of a gene under the control of these Hippo pathway effectors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号