首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用碱消解—电感耦合等离子体发射光谱(ICP-OES)检测方法对土壤中六价铬含量进行分析。土壤样品以碳酸钠-氢氧化钠为消解液,加入氯化镁和磷酸氢二钾-磷酸二氢钾缓冲溶液,经90-95℃消解溶出六价铬,用电感耦合等离子体发射光谱仪测定消解液中六价铬含量。在选定的测定条件下,方法的检出限为0.24 mg/kg,测定下限为0.96 mg/kg,加标回收率在99.6 %~104.1%之间,相对标准偏差2.53%-7.48%。该方法简便快速,稳定性好,结果准确可靠,适用于土壤中六价铬含量的分析。  相似文献   

2.
为了寻求一种更加适合废水中低含量银的测定方法,本文采用石墨电热板消解-电感耦合等离子体质谱法测定废水中的低含量银离子。通过仪器工作条件最优化、测定线性回归方程、检出限、准确度、精密度、实际样品加标回收率,并与电感耦合等离子体发射光谱法(ICP-AES)的实际样品测定结果进行比对来评价该方法的实用性。石墨电热板消解-电感耦合等离子体质谱法前处理方法简便,分析速度快且该方法检出限较低,为0.03ug/L,标准样品测定的相对误差为-0.7%~1.7%,相对标准偏差为1.1%~2.5%,实际样品加标回收率在97.0%~103%之间,回收率高,能够满足废水中低含量银的测定。  相似文献   

3.
建立聚乙烯离心管石墨消解-电感耦合等离子体光谱仪测定土壤中硼含量的方法。将土壤样品风干,粉碎至粒径不大于150μm,称量0.1 g土壤样品于50 mL离心管中,加入3 mL盐酸-硝酸-氢氟酸混合液(体积比为1∶1∶1)作为消解试剂,在石墨消解炉中于105℃消解45 min,将消解溶液静置至室温,用去离子水定容至50 mL,取上清液,采用电感耦合等离子体光谱法进行测定。硼的质量浓度在0~2.5μg/mL范围内与光谱强度的线性关系良好,线性方程为y=97 952x-326.14,相关系数为0.999 6,方法检出限为1.0 mg/kg。用该方法对国家标准物质进行测定,测定结果的相对标准偏差为0.79%~1.72%(n=12),样品加标回收率为99.1%~100.7%。  相似文献   

4.
利用硝酸、盐酸、氢氟酸混合液和微波消解仪密闭消解样品,建立了一种微波消解-电感耦合等离子体质谱(ICP-MS)法同时测定土壤中铜、铅、锌、锰、钒、铬、镉、镍、锡、铊10种重金属的分析方法。取0.100 0 g土壤样品于消解罐中,采用4 mL硝酸+1 mL盐酸+1 mL氢氟酸消解体系按照设定程序进行微波消解,冷却,定容后利用电感耦合等离子体质谱法进行。结果表明,以铑元素作为内标,10种重金属元素在一定的质量浓度范围内与其信号强度呈线性关系,线性相关系数均不小于0.999 8,检出限为0.010~0.92 mg/kg。对3种标准物质进行测定,测定值的相对标准偏差为2.89%~7.72%(n=10),相对偏差为-5.95%~4.11%。该方法分析流程简单,工作效率高,检出限低,适合大批量土壤样品的多元素同时分析。  相似文献   

5.
电感耦合等离子体质谱法测定土壤中痕量铀   总被引:1,自引:0,他引:1  
建立电感耦合等离子体质谱法测定土壤样品中痕量铀含量的方法。采用硝酸、氢氟酸、高氯酸混合酸消解样品后,以铼为内标溶液校正基体干扰,用电感耦合等离子体质谱仪测定土壤中的痕量铀含量。实验结果表明,铀的质量浓度在0~20 ng/m L范围内与信号强度呈线性关系,相关系数r=0.999 9,方法检出限为0.006μg/g,测定结果的相对标准偏差小于5%(n=6),加标回收率在96%~103%之间。用该方法与标准方法对同一样品进行测定,两种方法测定结果一致。该方法准确可靠,满足土壤样品中痕量铀含量的测定要求。  相似文献   

6.
对不同的样品消解方法及电感耦合等离子体质谱、电感耦合等离子体原子发射光谱、石墨炉原子吸收光谱法测定土壤中铅的测定结果进行比对。采用电热板、微波及水浴3种加热方式,选择硝酸、氢氟酸、双氧水、王水、高氯酸、盐酸的不同组合进行土壤样品消解,通过分析测定值的精密度和准确度,考察消解体系对电感耦合等离子体质谱、电感耦合等离子体发射光谱、石墨炉原子吸收光谱法测定结果的影响。结果表明采用电感耦合等离子体质谱法测定土壤中的铅,最适宜的消解体系是硝酸-氢氟酸-高氯酸(微波加热),采用电感耦合等离子体原子发射光谱法测定最适宜的消解体系是硝酸(电热板加热),采用石墨炉原子吸收光谱法测定最适宜的消解体系是硝酸-盐酸-高氯酸(微波加热)。电感耦合等离子体质谱法的精密度和准确度优于另外两种方法。  相似文献   

7.
微波消解-ICP-MS法测定油条中的铝   总被引:1,自引:0,他引:1  
采用微波消解前处理方法,外标法定量,电感耦合等离子体质谱测定了油条中的铝元素.方法的检出限为0.50 μg/L,样品测定结果的相对标准偏差为0.66%~3.5%,回收率为96.2%~100.9%(n=6).用该方法分析了国家标准物质小麦成分分析标准物质(GBW10011)与茶叶成分分析标准物质(GBW10016)中铝元素的含量,测定值与标准值吻合.  相似文献   

8.
建立电感耦合等离子体质谱法快速筛查婴童用品中六价铬的迁移量.选取不同种类的婴童用品材料,用0.07 mol/L盐酸萃取液接触提取后,采用电感耦合等离子体质谱仪分析萃取液中总铬含量,对六价铬进行初筛测试.结果表明,铬的质量浓度在0~500μg/L范围内与信号强度有良好的线性关系,相关系数为0.9999,检出限为0.18μ...  相似文献   

9.
建立氯化钙提取-电感耦合等离子体质谱(ICP-MS)法同时测定土壤中铜、铅、锌、镍、汞、砷、铬、镉8种可提取态元素的分析方法。对提取温度、提取剂浓度和振荡转速进行优化,采用62Ni同位素消除44Ca16O对镍元素的干扰,采用金标准清洗液对ICP-MS仪进样系统进行清洗,消除了汞元素测定过程中的记忆效应;采用碰撞池技术和62Ni同位素相结合的方式对土壤中8种可提取态元素进行测定。铜、铅、锌、镍、砷、铬、镉的质量浓度在0.00~100.00ng/mL范围内、汞的质量浓度在0.00~20.00 ng/mL范围内与质谱强度具有良好的线性关系,相关系数为0.999 4~0.999 9,检出限为0.002~0.35 mg/kg。土壤标准样品的测定值与标准值基本一致,相对误差为0.67%~8.6%,测定结果的相对标准偏差为1.4%~9.6%(n=6)。该方法简单快速,符合《区域生态地球化学评价规范》(DZ/T 0289—2015)和《土地质量地球化学评价规范》(DZ/T 0295—2016)规定。  相似文献   

10.
建立了盐酸、硝酸、氢氟酸、高氯酸四酸消解-电感耦合等离子体质谱体系,对土壤环境样品中的铜、铅、锌、镍、镉、铬、钴、铊、锰、锑等重金属的测定进行了研究与讨论。优化了样品前处理条件和电感耦合等离子体质谱仪的相关参数,并利用内标元素45Sc、103Rh、209Bi校正土壤基体效应干扰。实验结果表明,各元素标准曲线的相关系数R均在0.9996之上,方法检出限(3σ)在0.007-0.325ug/g之间,加标回收率为92.5%-108.2%,相对标准偏差为0.2%-4.2%。研究过程中选用国家一级土壤成分分析标准物质进行质量控制,其测定值与标准值基本相符,从而为土壤中重金属元素提供了真实有效的检测依据,可用于大批量土壤中重金属元素的测定。  相似文献   

11.
建立了微波辅助提取-电感耦合等离子体质谱法(MAE-ICP-MS)测定海产品中总有机锡含量的方法。以丙酮-正己烷(体积比3∶1)为溶剂,微波辅助提取海产品中的有机锡,采用ICP-MS测定。微波提取条件如提取剂用量、溶剂比例、提取温度及提取时间采用正交设计进行优化。方法检出限为0.47ng/g,平均加标回收率为92.7%~106%,相对标准偏差(RSD)在1.18%~2.38%之间。该法可应用于虾米、淡菜、海砺干、蛤砺干、海星等海产品中总有机锡的测定。  相似文献   

12.
建立了碱消解-火焰原子吸收光谱法测定土壤中六价铬的方法。讨论了pH值对六价铬测定的影响。干扰实验的结果表明同等含量的三价铬对六价铬测定无干扰。实验对比了无背景校正、氘灯背景校正、塞曼背景校正三种工作方式,分别对低、中、高三个水平土壤六价铬标准物质进行了测定,结果表明,低含量的土壤样品用塞曼背景校正方式测定的结果更准确,最终选择了塞曼背景校正的工作方式。方法的线性范围0.1~2.0mg/L,线性相关系数R为0.999 8,相对标准偏差(RSD)为1.1%;当取样量5g,定容体积100mL时,方法检出限为0.20mg/kg,加标回收率为84.8%~86.9%,能满足日常测定需求。  相似文献   

13.
利用高分辨电感耦合等离子体质谱法测定半导体级高纯氢氟酸中的痕量金属杂质,用膜去溶进样系统直接进样检测,无需前处理、快速,避免了在样品前处理时的污染问题。高分辨电感耦合等离子体质谱法可以消除多分子离子干扰,降低检出限,提高定量准确性。方法的检出限为0.09~37.07ng/L,加标回收率为92.3%~116.8%。方法简单,结果可靠,适用于高纯氢氟酸中痕量元素的快速测定。  相似文献   

14.
采用湿法消解对不同厂区的土壤进行前处理,应用电感耦合等离子体原子发射光谱法(ICP-OES)测定土壤中的金属元素含量,使用原子荧光光谱法AFS测定砷的含量,测定的相对标准偏差为0.8%~3.0%,回收率为89.0%~105.5%。实验表明,方法简单快速、准确,较高的灵敏度和较低的检出限,均能满足土壤中多元素分析的要求。  相似文献   

15.
高分辨电感耦合等离子体质谱法测定地质样品中的微量锗   总被引:1,自引:0,他引:1  
应用高分辨电感耦合等离子体质谱法测定地质样品中的微量锗。研究了地质样品中不同酸消解方法、提取方法对测定锗的影响,以及在高分辨电感耦合等离子体质谱仪高、中、低分辨率模式下测定地质样品中锗的质谱行为。用氢氟酸-硝酸体系分解样品,硝酸提取,在中分辨率模式下进行测定。方法的检出限(3s)为10ng·g-1。方法用于10个国家标准物质中锗含量的测定,测定值与认定值相符,测定值的相对标准偏差(n=10)小于4.5%。  相似文献   

16.
通过对观测方式、测定波长、共存元素干扰等因素进行分析和条件优化,建立了测定磷酸一铵、磷酸二铵中铊含量的碘化钾-甲基异丁基甲酮(KI-MIBK)萃取电感耦合等离子体发射光谱法。实验表明,直接采用电感耦合等离子体发射光谱法进行测定时,磷酸一铵、磷酸二铵中的锰元素对分析结果有正干扰。通过萃取分离,干扰被排除,测定结果准确、可靠。在0~1.0 mg/L范围内,铊的质量浓度与光谱强度呈良好的线性关系,相关系数达1.0000。该方法检出限为0.0072 mg/kg,相对标准偏差为4.28%(n = 10),加标回收率在97.00%~100.5%之间。  相似文献   

17.
在环境标准HJ 803–2016 《土壤和沉积物12种金属元素的测定王水提取–电感耦合等离子体质谱法》中,土壤样品前处理采用王水提取消解法,由于土壤中金属元素有一部分存在于硅酸盐晶体中不能被王水溶解,易导致消解不完全。用HJ 803–2016标准中电感耦合等离子体质谱法测定土壤中12种金属元素时,将王水与盐酸–硝酸–氢氟酸–高氯酸两种提取液的提取效果进行比较,以国家标准样品GSS–14,GSS–9,GSS–12为研究对象,测定其中12种金属元素的含量。结果表明,用王水提取时只有GSS–14中钴、镍、锌、镉,GSS–9中钴、镍、铜、镉,GSS–12中镍检测结果在标准值范围内;用盐酸–硝酸–氢氟酸–高氯酸提取时,检测结果均在标准值范围内,相关系数均大于0.999,方法检出限为0.002 5~0.39 mg/L,优化后的方法稳定性好,更适用于土壤中重金属含量的测定。  相似文献   

18.
通过对观测方式、测定波长、共存元素干扰等因素进行分析和条件优化,建立了碘化钾-甲基异丁基甲酮(KI-MIBK)萃取电感耦合等离子体发射光谱(ICP-OES)法测定磷酸一铵、磷酸二铵中铊含量的方法。实验表明,直接采用电感耦合等离子体发射光谱法进行测定时,磷酸一铵、磷酸二铵中的锰元素对分析结果有正干扰。通过萃取分离,干扰被排除,测定结果准确、可靠。在0~1.0mg/L范围内,铊的质量浓度与光谱强度呈良好的线性关系,线性相关系数达1.000 0。方法检出限为0.007 2mg/kg,相对标准偏差为4.3%(n=10),加标回收率在97.0%~101%。  相似文献   

19.
样品前处理是测定土壤中金属元素的关键步骤,为保障测定结果能如实反应土壤环境状况,比较不同的前处理方法对土壤中6种金属元素的同时提取能力。论文基于电感耦合等离子体质谱技术,采用微波和石墨消解装置,探索消解过程中酸种类、加酸方式、消解装置、赶酸温度等因素对测定土壤标准品和实际样品结果的影响。实验结果表明,样品通过依次加入盐酸、硝酸、氢氟酸、高氯酸,并在160 ℃赶酸的石墨消解方式进行前处理能快速、准确地测定土壤中的Cu、Pb、Zn、Cd、Cr、Ni六种元素,其前处理时长约8.5 h,并且消解成本比微波消解更低。在优化条件下,土壤标准样品中6种金属元素的检测结果的绝对回收率为91.5%~108%,相对标准偏差为0.8%~ 5.4%,方法检出限为0.02 mg/kg ~2 mg/kg。表明方法的灵敏度高、准确度与精密度好,适用于批量土壤样品的分析。  相似文献   

20.
建立了一种以聚氨酯泡沫富集-电感耦合等离子体原子发射光谱法(ICP-AES)测定土壤及水系沉积物中铊含量的分析方法,利用正交实验,确定最佳实验条件,方法的检出限为0.01mg/L,对土壤及水系沉积物标准物质的测定结果与推荐值相符,相对误差小于10%,相对标准偏差(RSD,n=10)在1.9%~4.9%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号