首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对不同的样品消解方法及电感耦合等离子体质谱、电感耦合等离子体原子发射光谱、石墨炉原子吸收光谱法测定土壤中铅的测定结果进行比对。采用电热板、微波及水浴3种加热方式,选择硝酸、氢氟酸、双氧水、王水、高氯酸、盐酸的不同组合进行土壤样品消解,通过分析测定值的精密度和准确度,考察消解体系对电感耦合等离子体质谱、电感耦合等离子体发射光谱、石墨炉原子吸收光谱法测定结果的影响。结果表明采用电感耦合等离子体质谱法测定土壤中的铅,最适宜的消解体系是硝酸-氢氟酸-高氯酸(微波加热),采用电感耦合等离子体原子发射光谱法测定最适宜的消解体系是硝酸(电热板加热),采用石墨炉原子吸收光谱法测定最适宜的消解体系是硝酸-盐酸-高氯酸(微波加热)。电感耦合等离子体质谱法的精密度和准确度优于另外两种方法。  相似文献   

2.
提出了微波酸溶-电感耦合等离子体质谱法(ICP-MS)同时测定固体废物中17种元素的方法。取固体废物样品0.1~0.2g(称准至±0.1mg)加入硝酸-氢氟酸-盐酸-过氧化氢(4+1+1+1)混合液7mL,于175℃微波消解20min,将消解液于150℃蒸发至近干,加水溶解残渣并定容至50mL。取固体废物浸出液25.00mL,加入硝酸-盐酸(4+1)混合酸5mL,于165℃微波消解10min后,按上述手续处理后作为样液。用电感耦合等离子体质谱法测定上述两类样液中17种元素。各元素测定值的相对标准偏差(n=6)分别在4.5%~12%之间(固体样品)和0.4%~15%之间(浸出液样品);加标回收率分别在89.1%~116%和82.4%~113%之间。按所提出方法分析了一个CRM(TCLPlot#7044-52,ISS1),测定值与认定值一致。  相似文献   

3.
微波消解ICP-OES法测定土壤样品中22种元素   总被引:4,自引:0,他引:4  
采用微波消解辅助混酸(盐酸-硝酸-氢氟酸-高氯酸),讨论了加入草酸、柠檬酸、酒石酸、EDTA二钠盐等络合剂对土壤样品进行前处理的影响,根据加标回收实验和国家标准物质(GSS-1)验证实验,采用电感耦合等离子体发射光谱法(ICP-OES)同时分析土壤样品中的22种元素。结果表明:加入4 mL 10%的酒石酸络合剂的效果最好,22种元素测定结果的相对标准偏差在0.06%~4.0%范围内;检出限为0.024~0.846μg/mL;回收率良好。该方法可用于土壤样品前处理技术及土壤中元素含量测定。  相似文献   

4.
建立微波消解-电感耦合等离子体发射光谱法同时测定土壤中多种主次元素的分析方法。采用硝酸-氢氟酸-双氧水体系在微波消解仪中消解土壤样品,待消解完成后加入高氯酸驱赶氢氟酸,盐酸溶解盐类物质,将土壤中所有元素的矿物晶格破坏使待测溶液全部进入试液,采用电感耦合等离子体发射光谱进行测定。通过筛选合适分析谱线和合理设置背景扣除位置提高样品分析中的精密度和准确度。选用国家土壤标准物质进行方法验证,绝大多数实验结果与标准值吻合,RSD小于5%。本方法具有同时测定土壤样品多种元素、试剂用量少、操作简单等优点,表明该方法适合大批量土壤中主次元素的快速检测。  相似文献   

5.
为探究不同混合酸对电感耦合等离子体原子发射光谱法测定土壤中重金属元素(铜、锌、铅、镍和铬)的影响,对土壤进行多晶衍射分析,采用硝酸-高氯酸、盐酸-硝酸、盐酸-硝酸-氢氟酸-高氯酸、盐酸-硝酸-氢氟酸混合酸对4种不同类型土壤(黑钙土、褐土、棕壤、红壤)进行了分析。结果表明:该4种混合酸对标准样品的测定都具有较高的准确性与精确性;不同的混合酸的对不同类型土壤中重金属元素的测定具有一定的影响,其中对铬的影响最大;完全消解体系(盐酸-硝酸-氢氟酸-高氯酸、盐酸-硝酸-氢氟酸混合酸)的测定结果不同程度地高于不完全消解体系(硝酸-高氯酸、盐酸-硝酸混合酸)的结果。所以对于土壤重金属元素的测定,混合酸需要针对土壤类型,重金属元素种类等因素进行选择。  相似文献   

6.
测定土壤中铍、锌、钼、铊、钛、锑等6种元素以硝酸-氢氟酸-高氯酸混合酸为消解体系,采用全自动消解法进行消解;测定土壤中钒、锰、钴、镍、铜、镉、钡、铅、铬等9种元素以硝酸-氢氟酸-盐酸混合酸为消解体系,采用微波消解法进行消解。以氩为内标元素校正土壤基体的雾化效率及电离效率。电感耦合等离子体原子发射光谱法(ICP-AES)采用多向观测模式,结合多重谱线拟合技术(MSF)校正光谱干扰,测定环境土壤中上述15种元素的含量,检出限为0.1~3.7 mg·kg~(-1)。按上述方法测定标准样品GSS~(-1)0和GSS~(-1)3,各元素的测定值与认定值吻合,相对标准偏差(n=11)为0.15%~2.6%。以吉林市某河岸土壤为实际测定样品,各元素的测定值与电感耦合等离子体质谱法(ICP-MS)的测定值一致,相对标准偏差(n=11)为1.6%~4.5%。  相似文献   

7.
建立聚乙烯离心管石墨消解-电感耦合等离子体光谱仪测定土壤中硼含量的方法。将土壤样品风干,粉碎至粒径不大于150μm,称量0.1 g土壤样品于50 mL离心管中,加入3 mL盐酸-硝酸-氢氟酸混合液(体积比为1∶1∶1)作为消解试剂,在石墨消解炉中于105℃消解45 min,将消解溶液静置至室温,用去离子水定容至50 mL,取上清液,采用电感耦合等离子体光谱法进行测定。硼的质量浓度在0~2.5μg/mL范围内与光谱强度的线性关系良好,线性方程为y=97 952x-326.14,相关系数为0.999 6,方法检出限为1.0 mg/kg。用该方法对国家标准物质进行测定,测定结果的相对标准偏差为0.79%~1.72%(n=12),样品加标回收率为99.1%~100.7%。  相似文献   

8.
基于硝酸-盐酸-氢氟酸消解体系,建立了马弗炉-微波消解-电感耦合离子体质谱(ICP-MS)法同时测定荞麦秸秆中的Cr、Cu、Ag、Mn、Fe、As、Ni、Pb等重金属含量测定方法。在微波消解的过程中,分别考察5种不同组合的混合酸体系及两种消解方法对荞麦秸秆中8种重金属测试结果的影响。实验结果表明,浓硝酸-浓盐酸-氢氟酸(6∶2∶2)混酸体系和马弗炉-微波消解样品前处理优于其他方法。在优化条件下,8种重金属加标回收率为91.2%~102%,相对标准偏差(RSD,n=5)为0.22%~4.7%,检出限为0.18~9.41μg/L。方法操作简便、快速、准确,结果可靠,能同时测定荞麦秸秆中8种重金属元素。  相似文献   

9.
提出了用微波消解-电感耦合等离子体原子发射光谱法测定河流和湖泊沉积物中11种重金属元素(银、镉、钴、铬、铜、锰、镍、铅、锑、钒和锌)的方法。沉积物样品(0.100 0~0.500 0g)加入硝酸6mL,盐酸2mL,氢氟酸2mL,按程序升温微波消解,将消解液于130~140℃蒸发至近干,加水溶解残渣并定容至50mL。此溶液供电感耦合等离子体原子发射光谱法同时测定11种重金属元素含量,并选择了合适的分析谱线。光谱干扰运用背景扣除予以校准。测得各元素的检出限(3s)为0.20~2.00mg·kg~(-1)。以沉积物样品为基体,按标准加入法进行回收试验,测得回收率在81.6%~112%之间,相对标准偏差(n=6)均小于6.0%。按上述方法测定CRM(GBW 07360,GBW 07307a),测定值与认定值一致。  相似文献   

10.
提出了电感耦合等离子体原子发射光谱法测定土壤中铀含量的方法。土壤样品称样0.200 0 g,用硝酸6.0 mL、盐酸2.0 mL、氢氟酸2.0 mL于微波消解仪中消解完全。选择波长为385.958 nm的谱线作为铀的分析线。方法的检出限(3σ)为0.15 mg·L-1。方法用于分析国家标准物质GBW(E)080173,测定值与认定值相符。方法的回收率在92%~106%之间,测定值的相对标准偏差(n=10)为1.0%。  相似文献   

11.
提出了用微波消解-电感耦合等离子体质谱法测定有机肥料中砷、镉、铅、铬、汞等5种元素的方法。有机肥料样品(0.200 0~0.500 0g)加入硝酸10mL和过氧化氢溶液1mL,按程序升温微波消解,将消解液蒸发至2mL,用硝酸(1+99)溶液定容至50mL。用电感耦合等离子体质谱法测定上述样液中的砷、镉、铅、铬、汞等元素。各元素的检出限(3.3s/k)为0.015~0.040mg·kg~(-1),测定值的相对标准偏差(n=6)均小于5.0%。按标准加入法进行回收试验,测得回收率在98.0%~101%之间。  相似文献   

12.
建立了四酸微波消解-电感耦合等离子体原子发射光谱法(ICP-AES)测定土壤中6种重金属元素的方法。取0.10~0.20 g土壤样品用少量水润湿,加入6 mL硝酸、2 mL盐酸、1 mL氢氟酸和1 mL 30%(质量分数,下同)过氧化氢溶液,静置15 min使其充分反应,置于微波消解仪中按升温程序消解。消解液置于电热板上以140℃加热至溶液近干,用1%(体积分数)硝酸溶液溶解残渣并将其定容至25 mL,按优化的ICP-AES条件分析。所选的Pb、As、Ni、Cu、Zn、Cr的分析谱线分别为220.353,189.042,231.604,327.396,213.856,267.716 nm。结果显示:6种元素的质量浓度分别在1.00 mg·L~(-1)(Pb、As、Cu、Ni)内和2.00 mg·L~(-1)(Cr、Zn)内与其对应的光谱响应值呈线性关系,检出限(3s)为0.29~5.76μg·L~(-1);对标准样品进行6次重复测定,测定值的相对标准偏差为0.60%~2.6%,测定值与认定值基本一致。  相似文献   

13.
建立了微波消解-电感耦合等离子体原子发射光谱(ICP-AES)法同时测定土壤中多种主次元素的分析方法。采用硝酸-氢氟酸-双氧水体系在微波消解仪中消解土壤样品,待消解完成后加入高氯酸驱赶氢氟酸,盐酸溶解盐类物质,将土壤中所有元素的矿物晶格破坏使待测溶液全部进入试液,采用ICP-AES法测定。通过筛选合适分析谱线和合理设置背景扣除位置提高样品分析中的精密度和准确度。选用国家土壤标准物质进行方法验证,绝大多数实验结果与标准值吻合,相对标准偏差(RSD)小于5%。方法具有同时测定土壤样品中多种元素、试剂用量少、操作简单等优点,表明方法适合大批量土壤中主次元素的快速检测。  相似文献   

14.
建立了微波消解-电感耦合等离子体原子发射光谱(ICP-AES)法同时测定土壤中多种主次元素的分析方法。采用硝酸-氢氟酸-双氧水体系在微波消解仪中消解土壤样品,待消解完成后加入高氯酸驱赶氢氟酸,盐酸溶解盐类物质,将土壤中所有元素的矿物晶格破坏使待测溶液全部进入试液,采用ICP-AES法测定。通过筛选合适分析谱线和合理设置背景扣除位置提高样品分析中的精密度和准确度。选用国家土壤标准物质进行方法验证,绝大多数实验结果与标准值吻合,相对标准偏差(RSD)小于5%。方法具有同时测定土壤样品中多种元素、试剂用量少、操作简单等优点,表明方法适合大批量土壤中主次元素的快速检测。  相似文献   

15.
提出了微波消解-电感耦合等离子体质谱法(ICP-MS)同时测定有机肥料中As、Cd、Co、Cr、Ni、Pb、Sb、Tl、V等9种有毒有害元素含量的方法。取0.10 g有机肥料样品于聚四氟乙烯微波消解罐中,以2.5 mL盐酸、7.5 mL硝酸和2.0 mL氢氟酸为混合酸进行微波消解。消解结束后,于140℃赶酸,然后加入1.0 mL 50%(体积分数)硝酸溶液,再用水定容至50 mL,摇匀,过滤,取滤液待测,在线加入混合内标溶液。结果表明:9种元素标准曲线的线性范围均为2~100μg·L-1,方法检出限(3s)为0.59~66.75μg·kg-1;按照标准加入法对典型有机肥料样品进行回收试验,9种元素测定值的相对标准偏差(n=7)为2.0%~3.5%,回收率为81.5%~112%。  相似文献   

16.
建立了盐酸、硝酸、氢氟酸、高氯酸四酸消解-电感耦合等离子体质谱体系,对土壤环境样品中的铜、铅、锌、镍、镉、铬、钴、铊、锰、锑等重金属的测定进行了研究与讨论。优化了样品前处理条件和电感耦合等离子体质谱仪的相关参数,并利用内标元素45Sc、103Rh、209Bi校正土壤基体效应干扰。实验结果表明,各元素标准曲线的相关系数R均在0.9996之上,方法检出限(3σ)在0.007-0.325ug/g之间,加标回收率为92.5%-108.2%,相对标准偏差为0.2%-4.2%。研究过程中选用国家一级土壤成分分析标准物质进行质量控制,其测定值与标准值基本相符,从而为土壤中重金属元素提供了真实有效的检测依据,可用于大批量土壤中重金属元素的测定。  相似文献   

17.
基于硝酸-盐酸-氢氟酸消解体系,建立马弗炉-微波消解-电感耦合离子体质谱法同时测定荞麦秸秆中的Cr、Cu、Ag、Mn、Fe、As、Ni、Pb等重金属含量测定方法。在微波消解的过程中,分别考察五种不同组合的混合酸体系及两种消解方法对荞麦秸秆中八种重金属测试结果的影响。实验结果表明浓硝酸-浓盐酸-氢氟酸(6:2:2)混酸体系和马弗炉-微波消解样品前处理优于其他方法。在优化条件下八种重金属加标回收率为91.16~102.12%,相对标准偏差(RSD,n=5)为0.22% ~ 4.65%,检出限为0.18~9.41??g/L。该方法操作简便、快速、准确,结果可靠,同时测定荞麦秸秆中八种重金属。  相似文献   

18.
目前海洋沉积物前处理主要通过电热板消解,但该方法存在消解不完全、前处理时间长、重复性较差以及手工消解操作繁琐等问题。为提高海洋沉积物重金属消解效率,通过考察硝酸、盐酸、氢氟酸和高氯酸组合酸体系比例和最高消解温度对海洋沉积物预处理的影响,确定了最优的消解条件,建立了全自动消解-电感耦合等离子体质谱仪测定海洋沉积物中重金属的方法。结果显示硝酸占比越高各元素消解效果越好,盐酸用量不宜过多,逆王水消解比例最好。最优预处理条件为9 mL硝酸、3 mL盐酸、4 mL氢氟酸和2 mL高氯酸于160℃高温消解。该预处理条件下各元素相关性系数均大于0.999,经海洋沉积物标准样品(GBW07314)和实际样品应用,与国标法(GB/T 20260-2006)相比优化条件下各元素精密度和正确度均显著提高、检出限更低。各元素的相对标准偏差分别为0.9%~3.3%、0.5%~3.4%,回收率均在84.2%~102%。该方法自动化程度高、操作简便,可实现大批量样品预处理,适用于海洋沉积物中重金属元素的测定。  相似文献   

19.
建立微波消解-电感耦合等离子体发射光谱(ICP-OES)法快速测定盐渍土中二氧化硅含量的方法。称取0.100 0 g土壤样品,加入1 mL浓盐酸,1 mL浓硝酸和2 mL氢氟酸,微波消解120 min,最高消解温度为180℃,样品溶液采用ICP-OES法进行测定,以标准工作曲线法定量。硅元素的质量浓度在0~100 mg/L范围内与光谱强度线性关系良好,相关系数为0.999 8,二氧化硅的检出限为0.045 mg/kg。利用该方法对3个土壤样品进行测定,二氧化硅测定结果的相对标准偏差为0.354%~0.608%(n=6),对土壤成分分析标准物质GBW 07408、GBW 07447和GBW 07452进行测定,测定值均在标准值不确定度范围内。该方法可快速测定盐渍土中二氧化硅含量。  相似文献   

20.
为提高土壤检测的重金属得率,采用了微波消解/电热板组合预处理-电感耦合等离子体质谱法(ICP-MS)测定土壤重金属含量。分析了硝酸(HNO3)、氢氟酸(HF)、高氯酸(HClO4)和盐酸(HCl)组合消解液及赶酸温度对土壤预处理影响。结果显示:在硝酸和盐酸混合消解液中,硝酸占比越高,铬(Cr)、钴(Co)、铜(Cu)、镉(Cd)得率更高;消解液体系中加入氢氟酸可使消解更加彻底,提高铬与铜的得率。最优预处理消解条件为硝酸 6ml+ 氢氟酸 2ml消解液组合进行微波消解,1ml 高氯酸于155℃电热板上赶酸。经土壤标准样品GBW07401(GSS-1)和GBW07452(GSS-23)实际应用,预处理条件优化后测试准确度和稳定性均显著提高。此外使用元素铑(Rh)作为内标物时,其方法稳定性和准确性高于内标物钪(Sc)和锗(Ge)。可为相关国家土壤重金属测定标准的修制订提供方法学参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号