首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
基于拮抗作用检测除草剂的类囊体膜生物传感器研究   总被引:10,自引:0,他引:10  
利用除草剂对植物类囊体束缚酶分解过氧化氢的拮抗作用,研制了一种快速检测痕量除草剂的电化学生物传感器.将植物类囊体用聚乙烯醇-苯乙烯吡啶(PVA-SbQ)光敏聚合剂在紫外光诱导下产生大分子网状结构进行包埋,制成生物敏感膜,并固定在铂电极表面.根据加入除草剂时类囊体膜束缚酶分解过氧化氢活性的变化,对除草剂进行测定.在含有1×10-3mol/LNaCl,5×10-3mol/LMgCl2和0.01mol/LH2O2的Tris-HCl缓冲溶液(pH=7.4)中,基于测量0.65V处H2O2氧化电流的变化,可以对下列浓度的除草剂进行定量检测:百草枯3×10-9~1.5×10-7mol/L,敌草龙1×10-8~3×10-7mol/L,扑草净4×10-8~3×10-6mol/L,阿特拉津1×10-7~5×10-6mol/L,莠灭净1×10-7~5×10-6mol/L.利用PVA-SbQ光聚合膜固定类囊体,能够使酶的活性在低温下保持数月.  相似文献   

2.
柱前衍生非水毛细管电泳分离钴、镍和铜   总被引:2,自引:0,他引:2  
提出柱前衍生非水毛细管电泳分离金属离子的方法.应用新合成的2-(6-甲基-2-苯并噻唑偶氮)-5-二乙胺基酚作为柱前衍生试剂,乙醇和N,N-二甲基甲酰胺为非水溶剂,在6min内实现了钴、镍和铜的分离,灵敏度高,检测限分别为9.18×10-8mol/L、2.79×10-7mol/L和4.47×10-7mol/L.考察了柱前衍生条件、非水溶剂配比以及分离参数对分离的影响.  相似文献   

3.
用毛细管区带电泳-电化学检测法同时测定复方芦丁片及果汁中芦丁和L-抗坏血酸的含量.研究了电极电位、电解液浓度和酸度、电泳电压及进样时间等对电泳的影响,得到了较为优化的测定条件.以直径为300μm的碳圆盘电极为检测电极,电极电位为1.0V(vs.SCE),在25mmol/L硼砂-50mmol/LNaH2PO4(pH8.0)运行缓冲液中,上述两组分在12min内完全分离.芦丁和L-抗坏血酸浓度分别在1.0×10-6~2.5×10-4和5.0×10-6~2.5×10-3mol/L范围内与电泳峰电流呈现良好线性关系,检测下限分别为8.0×10-7和3.3×10-6mol/L.9次测定含5.0×10-5mol/L芦丁和2.5×10-4mol/LL-抗坏血酸的试样溶液,峰高的相对标准偏差分别为2.85%和1.65%,5次测得的平均回收率分别为97.73%和99.68%.  相似文献   

4.
将微流控芯片多相层流分离技术与离子选择性电极检测技术联用,利用重力驱动的芯片多相层流分离系统,在线净化生物(血液)试样.同时,在芯片上加工微离子选择性电极进行待测物的在线检测,实现整体分析系统的芯片集成化,并将其用于血样中K+的测定.对5.5×10-3mol/L钾溶液5次平行测定的相对标准偏差(RSD)为5.6%,检出限为6.8×10-5mol/L,线性范围10-4~10-1mol/L.  相似文献   

5.
使用反馈式微机控制双注仪,在晶体生长不同时期,依次加入不同量碘盐和一定量甲酸盐,制得了两个系列的溴碘化银乳剂:一系列为碘含量分别为乳剂颗粒总银量的0、2×10-2、3×10-2、4×10-2和5×10-2I-mol/Ag mol的溴碘化银颗粒乳剂;另一系列为碘含量与上述系列乳剂相同,并掺杂有1×10-4mol/Ag mol甲酸根的溴碘化银颗粒乳剂.对其感光性能的测试结果表明,经过化学敏化和光谱增感后,甲酸根掺杂的溴碘化银乳剂较未掺杂甲酸根的乳剂,感光度显著提高,在一定量的I-掺杂范围内(0-4×10-2I-mol/Ag mol),灰雾没有明显增加.  相似文献   

6.
研究了聚茜素红膜修饰电极(PARE)的制备及其对多巴胺(DA)和抗坏血酸(AA)的电催化性能,结果表明,在PARE上DA和AA具有不同的循环伏安行为,前者表现为一个准可逆过程,后者则为不可逆过程,并且二者的氧化峰电位分开近200mV.因此可通过控制不同的电位范围进行分步扫描,实现了对同一体系中DA和AA的分别测定,DA的还原峰电流和AA的氧化峰电流分别在8.0×10-6~4.0×10-3mol/L和4.0×10-5~2.0×10-2mol/L范围内与各自的浓度呈线性关系;检测限分别为8.0×10-7mol/L和1.0×10-5mol/L.同时与导数伏安法一步测定进行比较,结果令人满意.  相似文献   

7.
报道了双柱微电极的制作方法,提出了用双柱碳纤维微电极在抗坏血酸存在下选择性地测定多巴胺.探讨了电极反应机理.多巴胺的浓度在5.0×10-4~5.0×10-6mol/L范围内与收集电流成正比.抗坏血酸浓度<5.0×10-4mol/L时对测定结果无影响.  相似文献   

8.
本文研究了K4[Fe(CN)6]掺杂对溴碘化银T-颗粒乳剂感光性能的影响.结果表明,掺杂剂的掺杂量以及掺杂位置对乳剂的感光性能都有影响.K4[Fe(CN)6]的掺杂量在每克乳剂31×10-9-31×10-11mol之间时,乳剂感光度都有提高.最佳掺杂量为每克乳剂31×10-10mol.掺杂位置接近表面时效果相对较好,表明K4[Fe(CN)6]是浅电子陷阱掺杂剂.当掺杂剂的掺杂量大于每克乳剂31×10-8mol,且掺杂位置在乳剂颗粒较深内部时,乳剂的感光度反而下降.  相似文献   

9.
利用生物素与亲合素之间的特异性结合,在恒电位下,首先将亲合素吸附在电极上,然后使标识在生物素上的葡萄糖氧化酶固定于电极表面,制成具有高活性的多层固定化酶的葡萄糖传感器。电极线性范围:1.0×10-5~1.0×10-2mol/L,检测限:6.0×10-6mol/L,响应时间:6s.本传感器具有线性范围宽、灵敏度高、响应速度快、可反复活化使用等优点。  相似文献   

10.
漆树漆酶催化2,6-二甲基酚的氧化反应   总被引:2,自引:0,他引:2  
在0.1mol/L磷酸盐缓冲液中,漆树漆酶催化2,6-二甲基酚(DMP)氧化生成3,3'5.5'-四甲基-4,4'-二苯醌(TMDQ).pH8.0,温度40~50℃时酶促氧化DMP较快.DMP浓度在1.66×10-4~9.92×10-4mol/L时为一级反应,速率常数为3.57×10-5s-1,共存的二茂铁(Fc-H)能大大促进酶促氧化DMP的速度.提出了该反应可能的反应机理。  相似文献   

11.
To miniaturize high-performance membrane chromatography, a poly(vinylidene fluoride) membrane medium, employed as the stationary phase, is sandwiched between two poly(dimethylsiloxane) substrates containing the microchannels. The microchannels are fabricated by the capillary molding technique, involving the use of capillaries as the channel template and the fluid inlet/outlet. The micro(micro)-membrane chromatography system is coupled with a micro-enzyme reactor containing immobilized trypsins for performing rapid protein digestion, peptide separation, and protein identification using electrospray ionization mass spectrometry. Separation performance of cytochrome c digest in micro-membrane chromatography is compared with the results obtained from a regular reversed-phase micro-liquid chromatography. The efficacy and the potentials of micro-membrane chromatography in tryptic mapping are reported. On-line integration of the micro-enzyme reactor with micro-chromatographic separation techniques and electrospray ionization mass spectrometry clearly provides a microanalytical platform for automated sample handling, minimized sample loss, and reduced sample consumption. It also provides enhanced detection sensitivity and dynamic range for the analysis of complex protein mixtures such as cell lysates in proteomics research.  相似文献   

12.
In this article, we developed a membrane-based enzyme micro-reactor by directly using commercial polystyrene–divinylbenzene cation–exchange membrane as the support for trypsin immobilization via electrostatic and hydrophobic interactions and successfully applied it for protein digestion. The construction of the reactor can be simply achieved by continuously pumping trypsin solution through the reactor for only 2 min, which was much faster than the other enzyme immobilization methods. In addition, the membrane reactor could be rapidly regenerated within 35 min, resulting in a “new” reactor for the digestion of every protein sample, completely eliminating the cross-interference of different protein samples. The amount and the activity of immobilized trypsin were measured, and the repeatability of the reactor was tested, with an RSD of 3.2% for the sequence coverage of cytochrome c in ten digestion replicates. An integrated platform for protein analysis, including online protein digestion and peptide separation and detection, was established by coupling the membrane enzyme reactor with liquid chromatography–quadrupole time-of-flight mass spectrometry. The performance of the platform was evaluated using cytochrome c, myoglobin, and bovine serum albumin, showing that even in the short digestion time of several seconds the obtained sequence coverages was comparable to or higher than that with in-solution digestion. The system was also successfully used for the analysis of proteins from yeast cell lysate.  相似文献   

13.
以石英毛细管作为酶固定化的载体, 在毛细管内壁上逐步合成树枝形大分子聚酰胺-胺(PAMAM), 再通过交联剂戊二醛将胰蛋白酶直接键合到该大分子的末端氨基上, 并对酶固定化条件进行了优化, 制备了多层酶反应器. 利用该酶反应器对马心细胞色素C等蛋白质进行了酶切, 并对酶切的条件进行了优化. 实验结果表明, 该固定化酶反应器具有较高的酶切效率、良好的重现性和稳定性, 可用于蛋白质组学的研究.  相似文献   

14.
Ye M  Hu S  Schoenherr RM  Dovichi NJ 《Electrophoresis》2004,25(9):1319-1326
A nanoliter enzyme microreactor was developed for on-line capillary electrophoresis (CE) peptide mapping of proteins, allowing picomole quantities of proteins to be digested. The enzyme microreactor was formed by immobilizing trypsin onto a monolithic capillary column, which was prepared by in situ polymerization of glycidyl methacrylate and ethylene dimethacrylate in a capillary. Highly efficient digestion of three protein standards was demonstrated. The detection of peptide fragments in CE was enhanced by post-column derivatization and laser-induced fluorescence detection. The microreactor has a volume of about 30 nL and is coupled with a separation capillary via a fluid joint for on-line digestion. The overall analysis, including digestion and separation, lasted only about 16 min. Column efficiencies > 300 000 plates/m were obtained for most peaks in the electropherogram of an on-line peptide mapping experiment of denatured alpha-lactalbumin under optimal conditions.  相似文献   

15.
The aim of this work was to develop a trypsin-based micro-immobilized enzyme reactor prepared on a monolithic ethylenediamine BIA Separations CIM (convective interaction media) minidisk. The micro-immobilized enzyme reactor (IMER) was integrated in a liquid chromatography system hyphenated to electrospray ionization tandem mass spectrometry to carry out on-line protein digestion and identification. The performance of this IMER was compared with that obtained using a previously developed bioreactor prepared on a conventional CIM ethylenediamine disk and with that of the commercially available Poroszyme immobilized trypsin cartridge. In this work, we showed how different proteins were identified with good recoveries using a digestion time of 10 min only.  相似文献   

16.
《Analytical letters》2012,45(5):868-878
Efficient protein digestion is a key step for successful mass spectrometry identification. However, traditional in-solution digestion suffers some drawbacks, such as autolysis of protease, long analysis times and lack of control. Recently, specific single-stranded nucleic acids, aptamers, screened from random sequence pools, have been performed high affinity for targets. In this paper, we have developed a novel enzyme reactor, which immobilized chymotrypsin based on aptamer-grafted silica beads. Mixed proteins, which consist of bovine serum albumin, myoglobin, and cytochrome c, were used as samples, to evaluate the digestion performance of the enzymatic reactor. With the use of this novel tool, proteins were digested in 40 min to an extent similar to that achieved with soluble enzyme at 37°C after 16 h. Moreover, enzymatic reactor regeneration was carried out through chymotrypsin elution and re-immobilization. The advanced characteristics of the aptamer-based chymotrypsin reactor demonstrated that aptamers could serve as novel materials for rapid and efficient enzyme immobilization and application in protein studies.  相似文献   

17.
A hydrophilic immobilized enzyme reactor (IMER) containing trypsin was prepared and applied in the proteolysis of glycoproteins. Glycoproteins including horseradish peroxidase, asialofetuin, and fetuin were used to evaluate the performance of the hydrophilic IMER for the glycoprotein digestion. The digested products were detected by matrix-assisted laser desorption/ionization quadruple ion trap time-of-flight mass spectrometry and micro-high-performance liquid chromatography. The hydrophilic IMER showed higher enzymatic digestion efficiency compared with conventional in-solution digestion. The digestion time could be reduced from 16 h to several minutes. Furthermore, using microwaves as a heat source, the reproducibility of the hydrophilic IMER was evaluated and this IMER could be recycled for at least ten times without obvious loss of enzyme activity. The hydrophilic IMER provides a promising tool for high-throughput glycoproteome analysis.  相似文献   

18.
A simple and rapid single-step method is presented to fabricate an enzyme reactor using trypsin immobilized on a macroporous polymer monolith. A reactor produced in a capillary format is ready to use within 1 h of preparation. The monomers making up the monolith, including N-acryloxysuccinimide for covalent immobilization of the enzyme, are mixed with trypsin and introduced into the column by capillary force for polymerization/immobilization. The enzyme activity from column-to-column is reproducible below 5% relative standard deviation (RSD), while the reactor is durable for at least 20 weeks when stored at room temperature. The apparent kinetic constants V(max) and K(m) are of value similar to those obtained by free trypsin in solution. Enzymatic digestion of proteins was shown to be feasible on a time-scale of seconds and submicromolar concentrations enabling peptide mass mapping by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.  相似文献   

19.
The catalytic performance of porous silicon (PS) micro enzyme reactors (muIMER) is strongly dependent on the PS matrix morphology for enzyme immobilisation. PS was achieved in the muIMER by anodisation in a HF-ethanol mixture. PS etching of structured silicon surfaces commonly results in an inhomogeneous pore formation. The deep channel microreactors described herein have previously suffered from these phenomena, yielding non-optimised muIMERs. In order to obtain a homogeneous PS layer on the deep microreactor channel walls, different reactor geometries (channel wall thicknesses of 50 and 75 mum) were anodised at 10 and 50 mA cm(-2) for anodisation times ranging between 0 and 50 min. The muIMERs were evaluated by immobilising two types of enzymes, glucose oxidase (GOx) and trypsin, and the resulting catalytic turnover was monitored by a colorimetric assay. It was found that reactors with a homogeneous PS matrix displayed improved performance. The trypsin muIMERs were used to digest a protein, beta-casein, in an on-line format and the digest was analysed by MALDI-TOF MS. The importance of tailoring the muIMER geometry and the PS-matrix is crucial for the protein digestion. Successful protein identification after only 12 s. digestion was demonstrated for the best reactor, 75 mum channel wall, 25 mum channel width, anodised at 50 mA cm(-2) for 10 min.  相似文献   

20.
In this study, methodology was developed for on-line and miniaturized enzymatic digestion with liquid chromatographic (LC) separation and mass spectrometric (MS) detection. A packed capillary LC-MS system was combined with on-line trypsin cleavage of a model protein, lactate dehydrogenase, to provide an efficient system for peptide mapping. The protein was injected onto an enzymatic capillary reactor and the resulting peptides were efficiently trapped on a capillary trapping column. Different trapping columns were evaluated to achieve a high binding capacity for the peptides generated in the enzyme reactor. The peptides were further eluted from the pre-column and separated on an analytical capillary column by a buffer more suitable for the following an electrospray ionisation (ESI) MS process. An important aspect of the on-line approach was the desalting of peptides performed in the trapping column to avoid detrimental signal suppression in the ESI process. The developed on-line system was finally compared to a classical digestion in solution, with reference to peptide sequence coverage and sensitivity. It was shown that the on-line system gave more than 100% higher peptide sequence coverage than traditional digestion methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号