首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
PHBV-GMA与PHBV-GMA/PPC共混物中接枝物的热性能与形态结构   总被引:2,自引:0,他引:2  
以甲基丙烯酸缩水甘油酯(GMA)单体对聚(3-羟基丁酸酯-3-羟基戊酸酯)(PHBV)接枝改性,得到的产物PHBV-GMA与封端后的聚碳酸亚丙酯(PPC)反应性共混。索氏抽提器提取PHBV-GMA和PHBV-GMA/PPC共混物,分别得到两种接枝产物PHBV-g-GMA和PHBV-g-PPC,用差示扫描量热法(DSC)、偏光显微镜(POM)以及原子力显微镜(AFM)研究其热性能和形态结构。结果发现,GMA接枝后,对PHBV结晶有成核效应。PPC接枝PHBV后,接枝物PHBV-g-PPC结晶度降低,球晶尺寸减小,PHBV和PPC两种大分子间的相分离程度降低,相容性明显提高。  相似文献   

2.
聚(3-羟基丁酸酯-co-3-羟基戊酸酯)(PHBV)是一种微生物发酵生产的热塑性聚合物。从物理、化学改性及其纤维成形两个方面综述了PHBV的研究进展。PHBV的物理改性主要有无机纳米粒子共混体系(PHBV/iNPs)、有机纳米晶共混体系(PHBV/oNPs)、高聚物共混体系(PHBV/Polymer)和绿色全降解共混体系;化学结构构筑主要包括接枝共聚改性、嵌段共聚改性、端基扩链改性等。从改性的手段及介质,分析了改性方法的优缺点。PHBV纤维的成形方法主要有熔融纺丝法、干法纺丝法及静电纺丝法。从PHBV纤维应用领域看,熔融纺纤维应用目标在于替代现有石油基相关产品,而静电纺纤维主要应用于开拓组织工程再生医学领域。最后,对PHBV今后的研究及发展提出了展望。  相似文献   

3.
采用熔融共混的方法制备了聚碳酸1,2-丙二酯(PPC)/聚琥珀酸丁二酯(PBS)共混物和PPC/PBS/DAOP(邻苯二甲酸二烯丙酯)增塑共混物,对共混物的相容性、热性能、结晶性和物理机械性能进行了初步研究.研究结果表明PPC/PBS共混物为不相容体系,PPC对PBS的结晶度影响很小;PBS的加入提高了共混物的起始热分解温度(Td-5%),当共混物中PBS含量从10%增加到90%时,共混物的Td-5%可分别增加15℃到59℃.DAOP对PPC/PBS共混物有增塑作用,当PPC/PBS/DAOP的比例从30/70/0变化到30/70/30时,共混物玻璃化转变温度(Tg)下降了36.9℃.与PPC/PBS共混物相比,组成优化的DAOP增塑共混物PPC/PBS/DAOP(PPC/PBS/DAOP=30/70/5)的断裂伸长率和断裂能最大可提高31倍和34倍,分别达到655.1%和3.4 J/mm2,因此引入DAOP尽管使共混材料的热稳定性有所下降,但拓宽了PPC/PBS共混材料的使用温度窗口.  相似文献   

4.
采用非异氰酸酯路线合成了1,6-六亚甲基二氨基甲酸羟异丙酯(BPU),分子量为320.利用熔融共混方法制备了聚碳酸1,2-丙二酯(PPC)/BPU共混物.研究发现BPU与PPC间有较好的相容性,随着BPU含量的增加,共混体系的起始热分解温度(Td.5%)可分别增加24~33℃,共混物韧性也显著提高,断裂伸长率最大可增至...  相似文献   

5.
聚乳酸与聚丙撑碳酸酯共混体系的性能   总被引:2,自引:0,他引:2  
采用熔融共混的方法制备了聚乳酸(PLA)/聚丙撑碳酸酯(PPC)共混物。DSC测试结果表明,纯PLA和PPC的玻璃化转变温度分别为54和37℃,不同组成的PLA/PPC共混物有2个明显的玻璃化转变温度,且与纯PLA和PPC的玻璃化转变温度相对应,说明二者是不相容体系。力学测试结果表明,当PPC质量分数超过20%时,可以看到明显的屈服点。共混物在拉伸过程中也有明显的颈缩、应力发白现象,表明随着PPC含量增加,PLA/PPC共混物由典型的脆性断裂向韧性转变。随着PPC含量的增加,共混物模量降低,断裂伸长率增加,当PPC质量分数为50%时,共混物的断裂伸长率达到最大值62%。共混物的粘度可在很宽的范围内予以调控,以满足不同加工的需要。  相似文献   

6.
采用溶液插层法制备了β-羟基丁酸与β-羟基戊酸酯共聚物(PHBV)有机化蒙脱土(OMMT)的纳米复合材料.用示差热分析(DSC),热重分析(TG)和偏光显微镜(POM)研究了材料的热性能和结晶行为.通过土壤悬浊降解培养法研究了材料的生物降解性.结果表明,材料的熔点和熔融焓随OMMT含量的增加而降低.OMMT在纳米复合材料中的均匀分散,使材料形成了小尺寸的结晶,并有效降低了PHBV的结晶度,提高了结晶速率.在土壤悬浊液中该材料的生物降解性随着OMMT含量的增加而降低.  相似文献   

7.
本文分别用溶液法和熔融法制得聚氯乙烯(PVC)与聚丙撑碳酸酯(PPC)共混试样,用DSC证明PVC/PPC共混物不相容,但它们不相容的程度受分子量、共混比例等因素的影响,并根据玻璃化转变温度(Tg)计算出溶液共混试样PPC富相中PVC的重量百分含量。NBR/PPC弹性体作偶联剂对PVC/PPC共混体系具有较好的增容作用,共混物中PPC的用量及分子量对共混体系性能有一定的影响。  相似文献   

8.
将聚乳酸(PLA)、聚碳酸酯(PPC)及β-羟基丁酸酯与β-羟基戊酸酯共聚物(PHBV)以溶液浇注法制备了各种不同比例的共混膜(60/20/20,40/20/40,40/40/20,20/60/20,20/40/40,20/20/60)。采用示差扫描量热分析(DSC)和热重分析(TG)研究了共混物的热性能,采用万能材料试验机研究了共混物的力学性能,通过土壤悬浊拟环境降解实验和扫描电子显微镜(SEM)研究了共混材料的环境生物降解性能。结果显示,该三元共混体系是部分相容的体系,PLA增加了材料的强度,PPC增加了材料的断裂伸长,PHBV则提高了材料的环境生物降解速率,三者优势互补,是一种有应用前景的生物降解共混体系。  相似文献   

9.
分别采用普通熔融共混法和水辅助加工法,制备了具有不同共混形态的聚丙撑碳酸酯(PPC)/淀粉共混物,并研究了淀粉分散形态对共混物的玻璃化转变温度(Tg)、流变以及力学性能的影响。研究结果表明,采用普通熔融共混法时,淀粉未发生糊化,并以原颗粒状分散于基体中;而采用水辅助加工法时,淀粉发生糊化,并在挤出过程中原位形成纤维结构。当淀粉以纤维形式分散于PPC基体中时,其与PPC间的界面接触面积显著增加,二者的相互作用增强,PPC/淀粉共混物的Tg、储能模量以及复合黏度显著提高。力学性能测试结果表明,当淀粉质量分数为30%,采用水辅助加工法制备的PPC/淀粉共混物的拉伸模量相比于纯PPC提高了67.7%。  相似文献   

10.
聚(L-丙交酯)/聚(DL-丙交酯)的结晶性能及相溶性   总被引:2,自引:0,他引:2  
用共溶液沉淀法制备了聚 (L 丙交酯 ) 聚 (DL 丙交酯 )共混物 (PLLA PDLLA) ,然后用成纤模压法压制成3 2mm的棒材 .用差示扫描量热法研究了共混物的结晶性能和相溶性 .结果表明 ,PLLA组分在共溶液沉淀过程中可生成结晶 ,共混物中PDLLA含量直到 30 %时 ,PLLA组分的结晶熔融温度和结晶度与纯PLLA相同 ,但PDLLA含量为 5 0 %时 ,PLLA组分的结晶熔融温度和结晶度明显下降 .由于加工成型条件的不一致性 ,共混物棒材中的PLLA组分的结晶熔融温度和结晶度呈较大的分散性 .共混物从熔体降温 ,在其后的升温DSC扫描中出现分别相应于PDLLA和PLLA的玻璃化转变 ,表明PDLLA与未结晶的PLLA形成的非晶相是不相溶的  相似文献   

11.
通过己内酯和氨基己酸开环、缩合反应制备了酯段含量为81%的线性聚酯酰胺(PEA),并用熔融共混的方法制备了PEA/聚碳酸亚丙酯(PPC)共混物,考察了PEA的引入对共混体系相容性、热力学稳定性和机械性能的影响。 结果表明,PEA与PPC之间有较好的相容性,共混物的热力学稳定性比PPC有显著提高,当PEA质量分数为3%时,共混体系的起始分解温度(T-5%)和最大分解速率时的温度(Tmax)比PPC分别提高了52.7%和46.4%。 通过调节PEA的含量可以使共混体系同时达到增强和增韧的效果。  相似文献   

12.
PTT/PET共混体系晶体形态与结晶性能的研究   总被引:1,自引:0,他引:1  
用差示扫描量热仪(DSC)、广角X射线衍射(WAXD)和正交偏光显微镜研究了聚对苯二甲酸丙二酯(PTT)和聚对苯二甲酸乙二酯(PET)共混体系的晶体形态与结晶性能.结果表明,共混体系结晶性能与PTT的含量有关.PET的加入,使共混体系的球晶尺寸减小.球晶完善性降低.当PTT含量为40wt%~60wt%时,共混物分别出现了双重熔融峰和双重结晶峰.双重熔融峰是加热过程中熔融重结晶造成的,双重结晶峰说明不完善的晶体产生的次级结晶.  相似文献   

13.
采用熔融共混制备了聚对苯二甲酸-己二酸丁二酯(poly(butylene adipate-co-terephthalate),PBAT)与聚3-羟基丁酸酯4-羟基丁酸酯(poly(3-hydroxybutyrate-co-4-hydroxybutyrate),P34HB)的共混材料。研究了P34HB含量(0 wt%, 5 wt%、 10 wt%、 15 wt%、 20 wt%)对共混材料熔体流动性能、力学性能、热性能和界面微观形貌的影响,及其PBAT/P34HB吹塑薄膜的力学性能和氧气阻隔性能。结果表明,P34HB的加入降低了材料的熔体黏度,提高了材料的流动性以及薄膜的直角撕裂性能、穿刺性能和氧气阻隔性能。当P34HB含量为5wt%时,共混材料综合性能最佳,两相相容性良好,共混材料和吹塑薄膜均具有优异的力学性能,薄膜的拉伸性能和穿刺强度最高,是性能优异的包装和农膜材料。  相似文献   

14.
通过熔融共混法制备了聚乳酸/微生物产β-羟基丁酸酯与β-羟基己酸共聚物的共混物(PLA/PHBHHx).采用拉伸力学试验研究了共混物的力学性能.通过土壤悬浊培养降解法和扫描电子显微镜(SEM)分析对共混材料的生物降解性能进行了研究.实验结果表明,随着PHBHHx含量的增加,共混物的拉伸强度和杨氏模量降低,而生物降解速率却显著提高.但是,在175h之前,重量组成比为20/80的共混物降解速率比纯PHBHHx还要快.综合分析表明,共混材料PLA/PHBHHx的重量比为20/80时,具有优良的力学性能和生物降解性.  相似文献   

15.
用DSC方法测定了氮化硼及滑石粉成核剂对(β-羟基丁酸酯-与-β-羟基戊酸酯) 共聚物(简称PHBV)等温结晶行为的影响. 结果表明,Avrami方程指数n、成核机理、晶体生长方式基本上不受成核剂的影响.少量的成核剂可使结晶成核自由能降低,结晶速率加大,其中氮化硼的效果最为显著.  相似文献   

16.
在不同的共混比例、不同的结晶温度下对不相容PHBV/PS、PHBV/PMMA结晶/非晶共混体系的结晶行为做了系统的研究.研究发现当PHBV含量为75wt%时,共混体系仍然和纯PHBV一样生成环带球晶;而当PHBV含量为50wt%时,共混体系在略低于非晶组分玻璃化转变温度时呈现花瓣状的球晶形貌;当PHBV含量为25wt%时,PHBV/PS体系出现不规则的晶体形貌,而PHBV/PMMA体系在偏光显微镜下没有观察到晶体.在这种不相容共混体系中,非晶组分的分散状态以及共混比例对共混体系中PHBV环带球晶的形成起到决定性的作用,而非晶组分对PHBV球晶的片晶前端生长的影响是形成花瓣状球晶的主要原因.  相似文献   

17.
以辛酸亚锡为催化剂,十八醇为引发剂,分别以右旋丙交酯和左旋丙交酯与乙交酯为原料,在真空条件下经本体熔融开环聚合制备了系列右旋丙交酯聚合物(E)和左旋丙交酯乙交酯共聚物(F),其结构经1H NMR和IR表征。利用DSC研究了E和F共混物(M)的结晶性能,结果表明,E和F能形成具有较高熔点的立构复合物(SC),其形成能力随E分子量的增加而降低,且SC的含量在E和F共混比为49∶51附近出现极大值。  相似文献   

18.
为考察离子液体对淀粉/聚丁二酸丁二醇酯(PBS)的作用效果,降低淀粉/PBS的脆性,以离子液体(1-丁基-3-甲基咪唑氯盐[BMIM]Cl)作为增塑改性剂通过熔融共混法制备了玉米淀粉/聚丁二酸丁二醇酯(PBS)共混材料,采用红外光谱(FTIR)、扫描电镜(SEM)、热重分析(TGA)、X射线衍射分析(XRD)及力学性能测试方法研究了[BMIM]Cl对淀粉/PBS共混材料结构和性能的影响.结果表明,[BMIM]Cl能与淀粉/PBS分子发生强相互作用,破坏淀粉/PBS共混物中原有的氢键与结晶结构,增强界面相互作用,改善相容性,进而改变淀粉/PBS共混材料的结构与性能;[BMIM]Cl的加入不影响淀粉/PBS的热稳定性,可使材料玻璃化转变温度(Tg)、结晶温度(Tc)、冷结晶温度(Tcc)及结晶度(Xc)降低.[BMIM]Cl具有显著降低淀粉/PBS脆性的作用,使其断裂伸长率大幅度增加,拉伸强度和弹性模量降低.  相似文献   

19.
通过熔融共混法制备了聚乳酸/微生物产β-羟基丁酸酯与β-羟基己酸共聚物的共混物(PLA/PHBHHx)。采用拉伸力学试验研究了共混物的力学性能。通过土壤悬浊培养降解法和扫描电子显微镜(SEM)分析对共混材料的生物降解性能进行了研究。实验结果表明,随着PHBHHx含量的增加,共混物的拉伸强度和杨氏模量降低,而生物降解速率却显著提高。但是,在175h之前,重量组成比为20/80的共混物降解速率比纯PHBHHx还要快。综合分析表明,共混材料PLA/PHBHHx的重量比为20/80时,具有优良的力学性能和生物降解性。  相似文献   

20.
本文通过同步辐射原位二维广角X射线(2D-WAXD)和原位红外光谱(FTIR)等手段,对聚(3-羟基丁酸酯-co-3-羟基戊酸酯)(PHBV)预取向膜二次拉伸过程及随后升温过程中的结构演化机制进行了系统研究。研究结果表明,二次拉伸过程中β晶的相对含量、取向程度和晶粒尺寸会随应变而升高;同时,体系的总α晶的取向度和晶粒尺寸变小,结晶度下降。这说明拉伸过程中,α晶会被破坏并转变为β晶。经过二次拉伸的PHBV膜,在升温过程中,α晶的取向、晶粒尺寸及总体结晶度会升高,而β晶的相对含量逐步下降到零。这说明在较高的温度下,β晶的分子链会重新排列,主要转变成了取向度高的α晶。β晶表现出从65℃到135℃的持续熔融转变。本研究初步阐释了PHBV薄膜中的β晶在拉伸和升温过程中的演化机制,为生物基聚酯薄膜的加工和性能调控提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号