首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
NBR-PPC弹性体偶联剂能促进PPC(聚丙撑碳酸酯)与PVC(聚氯乙烯)之间的相容性,改善共混物的力学性能,并在共混体系中产生轻度交联。偶联剂组成在NBR/PPC比例为70/30,NBR(丁腈橡胶)含腈量为34%,BPO过氧化苯甲酸用量为2.5份时,共混物的综合力学性能最佳,但偶联剂预先硫化时间不宜过长.  相似文献   

2.
用溶液法得到线形多嵌段聚氨酯(PU)与聚氯乙烯(PV)、氯化聚氯乙烯(CPVC)的共混物。用FTIR研究PU/PVC、PU/CPVC共混物的相容性,发现PVC、CPVC的加入破坏了PU中原来的氢键,并且PU中的炭基(C=0)与PVC、CPVC中的α-H形成了新的氢键,因而说明了PU/PVC、PU/CPVC共混物具有良好的相容性。  相似文献   

3.
聚[(双-甘氨酸乙酯)膦腈]/聚酯共混相容性研究   总被引:2,自引:0,他引:2  
采用溶液混合法制备了聚[(双-甘氨酸乙酯)膦腈](PGP)与丙交酯均聚物(PLA)或丙交酯/乙交酯共聚物(PLGA)的共混体系,利用示差扫描量热仪、傅里叶红外光谱仪和相差显微镜研究了两体系的共混相容性。实验结果表明,PGP与PLA不相容,但通过氢键相互作用可与PLGA达到部分相容,且PGP/PLGA的共混相容性随着PLGA含量的增加而有所改善。  相似文献   

4.
通过己内酯和氨基己酸开环、缩合反应制备了酯段含量为81%的线性聚酯酰胺(PEA),并用熔融共混的方法制备了PEA/聚碳酸亚丙酯(PPC)共混物,考察了PEA的引入对共混体系相容性、热力学稳定性和机械性能的影响。 结果表明,PEA与PPC之间有较好的相容性,共混物的热力学稳定性比PPC有显著提高,当PEA质量分数为3%时,共混体系的起始分解温度(T-5%)和最大分解速率时的温度(Tmax)比PPC分别提高了52.7%和46.4%。 通过调节PEA的含量可以使共混体系同时达到增强和增韧的效果。  相似文献   

5.
聚乳酸与聚丙撑碳酸酯共混体系的性能   总被引:2,自引:0,他引:2  
采用熔融共混的方法制备了聚乳酸(PLA)/聚丙撑碳酸酯(PPC)共混物。DSC测试结果表明,纯PLA和PPC的玻璃化转变温度分别为54和37℃,不同组成的PLA/PPC共混物有2个明显的玻璃化转变温度,且与纯PLA和PPC的玻璃化转变温度相对应,说明二者是不相容体系。力学测试结果表明,当PPC质量分数超过20%时,可以看到明显的屈服点。共混物在拉伸过程中也有明显的颈缩、应力发白现象,表明随着PPC含量增加,PLA/PPC共混物由典型的脆性断裂向韧性转变。随着PPC含量的增加,共混物模量降低,断裂伸长率增加,当PPC质量分数为50%时,共混物的断裂伸长率达到最大值62%。共混物的粘度可在很宽的范围内予以调控,以满足不同加工的需要。  相似文献   

6.
采用熔融共混的方法制备了聚碳酸1,2-丙二酯(PPC)/聚琥珀酸丁二酯(PBS)共混物和PPC/PBS/DAOP(邻苯二甲酸二烯丙酯)增塑共混物,对共混物的相容性、热性能、结晶性和物理机械性能进行了初步研究.研究结果表明PPC/PBS共混物为不相容体系,PPC对PBS的结晶度影响很小;PBS的加入提高了共混物的起始热分解温度(Td-5%),当共混物中PBS含量从10%增加到90%时,共混物的Td-5%可分别增加15℃到59℃.DAOP对PPC/PBS共混物有增塑作用,当PPC/PBS/DAOP的比例从30/70/0变化到30/70/30时,共混物玻璃化转变温度(Tg)下降了36.9℃.与PPC/PBS共混物相比,组成优化的DAOP增塑共混物PPC/PBS/DAOP(PPC/PBS/DAOP=30/70/5)的断裂伸长率和断裂能最大可提高31倍和34倍,分别达到655.1%和3.4 J/mm2,因此引入DAOP尽管使共混材料的热稳定性有所下降,但拓宽了PPC/PBS共混材料的使用温度窗口.  相似文献   

7.
对聚碳酸酯(PC)/苯乙烯 丙烯腈无规共聚物(PSAN)/聚甲基丙烯酸甲酯(PMMA)三元共混物,运用平均场理论,通过二元链段相互作用参数χij计算了其中三个二元对共混组成的相互作用参数χblend,并计算了三元共混体系的spinodal曲线.由此预测了三元共混物相容的条件,讨论了PSAN组成,各聚合物分子量对体系相容性的影响,并进行了实验验证.结果表明通过适当控制共聚组成和分子量,PSAN可以作为PC和PMMA共混物的增容剂,并可以通过仅改变PSAN在共混物中的比例来改善体系的相容性,直至得到完全均相的三元共混物.  相似文献   

8.
高速搅拌对淀粉/聚乙烯醇共混物溶液成膜性能的影响   总被引:10,自引:0,他引:10  
淀粉与聚乙烯醇(PVA)溶液在高速搅拌下共混,可大大改善淀粉/PVA共混薄膜的力学性能、透明性与耐水性,对其生物降解性有明显的影响.淀粉/PVA共混体系在高速搅拌前后的光谱分析、显微观察、分子量及流变性能的测定表明,这些变化起因于高速搅拌增加了淀粉中直链淀粉的含量,同时提高了淀粉与PVA共混溶液的稳定性,改善了淀粉/PVA共混物薄膜的使用性能.  相似文献   

9.
粘弹性变化对聚对苯二甲酸丁二酯/聚苯乙烯共混物分散相尺寸的影响曾继军何嘉松沈蓓(中国科学院化学研究所工程塑料国家重点实验室北京100080)关键词共混物,粘弹性,凝聚效应近五年来,不相容聚合物共混物(IPB)形态形成的具体过程引起了人们的关注....  相似文献   

10.
甲基丙烯酸甲酯 甲基丙烯酸共聚物(P(MMA MAA))与低分子量或高分子量梯形聚苯基硅倍半氧烷(PPSQ)的共混物经原位聚合法制成.用光学透明法、荧光光谱、DSC等技术研究了该共混体系的相容性及组分间的相互作用及结构转变.结果表明,当PPSQ含量较小时,由于PPSQ与P(MMA MAA)间存在着较强的氢键作用,该共混体系在一定配比下相容,且低分子量PPSQ与P(MMA MAA)间的相容性较好.当PPSQ的含量≤1%时,PPSQ的加入对该共混物的Tg影响不大,但其Tf随PPSQ含量增加而增大.此外,还测试了P(MMA MAA)/PPSQ原位共混物的硬度及冲击强度.  相似文献   

11.
偶联剂对聚氯乙烯-聚丙撑碳酸酯共混体系力学性能的影响王胜杰,黄玉惠,丛广民(中国科学院广州化学研究所广州510650)关键词聚氯乙烯,聚丙撑碳酸酯,偶联剂,丁腈胶,过氧化苯甲酰,共混聚氯乙烯(PVC)是用量巨大的通用塑料,其软性制品需用大量的增塑剂,...  相似文献   

12.
In this study, the poly (lactic acid) (PLA) and poly (propylene carbonate) (PPC) blends with different compositions were prepared by a novel vane extruder based on elongation rheology. The mechanical properties, morphologies, crystallization behavior, thermal stability, and rheological properties of the blends were investigated. Mechanical test showed that PLA could be toughened by PPC to some extent, and the impact strength of the PLA was maximized when PPC content was about 30%. Differential scanning calorimetry analysis revealed that PPC had little effect on the melting process, the crystallization behavior of PLA component in the blend was improved, and the cold crystallizability of PLA decreased with the increase of PPC content when the PPC content was less than 50%. Thermogravimetry analysis showed that the thermal stability of the blends was improved by compounding with PLA. Scanning electron microscope showed that the dispersion of PLA droplets in PPC matrix was better than that of PPC droplets in PLA matrix. Rheological test showed that the melt viscosity of the pure PLA and the blend with 10% PPC was insensitive to shear rate, and the blends melt appeared shear thinning phenomenon with the increase of PPC content. It also showed that the blends microstructure changed with the addition of PPC and the blends with PPC content in a certain range had similar stress relaxation mechanism. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
The intermolecular interactions between poly(vinyl chloride) (PVC) and poly(vinyl acetate) (PVAc) in tetrahydrofuran (THF), methyl ethyl ketone (MEK) and N,N-dimethylformamide (DMF) were thoroughly investigated by the viscosity measurement. It has been found that the solvent selected has a great influence upon the polymer-polymer interactions in solution. If using PVAc and THF, or PVAc and DMF to form polymer solvent, the intrinsic viscosity of PVC in polymer solvent of (PVAc+THF) or (PVAc+DMF) is less than in corresponding pure solvent of THF or DMF. On the contrary, if using PVAc and MEK to form polymer solvent, the intrinsic viscosity of PVC in polymer solvent of (PVAc+MEK) is larger than in pure solvent of MEK. The influence of solvent upon the polymer-polymer interactions also comes from the interaction parameter term Δb, developed from modified Krigbaum and Wall theory. If PVC/PVAc blends with the weight ratio of 1/1 was dissolved in THF or DMF, Δb<0. On the contrary, if PVC/PVAc blends with the same weight ratio was dissolved in MEK, Δb>0. These experimental results show that the compatibility of PVC/PVAc blends is greatly associated with the solvent from which polymer mixtures were cast. The agreement of these results with differential scanning calorimetry measurements of PVC/PVAc blends casting from different solvents is good.  相似文献   

14.
To assess the compatibility of blends of synthetic poly(propylene carbonate) (PPC), with a natural bacterial poly(3-hydroxybutyrate) (PHB), a simple casting procedure of blend was used. poly(3-hydroxybutyrate)/poly(propylene carbonate) blends are found to be incompatible according to DSC and DMA analysis. In order to improve the compatibility and mechanical properties of PHB/PPC blends, poly(vinyl acetate) (PVAc) was added as a compatibilizer. The effects of PVAc on the thermal behavior, morphology, and mechanical properties of 70PHB/30PPC blend were investigated. The results show that the melting point and the crystallization temperature of PHB in blends decrease with the increase of PVAc content in blends, the loss factor changes from two separate peaks of 70PHB/30PPC blend to one peak of 70PHB/30PPC/12PVAc blend. It is also found that adding PVAc into 70PHB/30PPC blend can decrease the size of dispersed phase from morphology analysis. The result of tensile properties shows that PVAc can increase the tensile strength and Young’s modulus of 70PHB/30PPC blend, and both the elongation at break and the tensile toughness increase significantly with PVAc added into 70PHB/30PPC.  相似文献   

15.
The photooxidative degradation of blends (in a full range of compositions) of amorphous poly(vinyl chloride) (PVC) with semicrystalline poly(ethylene oxide) (PEO) in the form of thin films is investigated using absorption spectroscopy (UV–visible and Fourier transform infrared) and atomic force microscopy (AFM). The amount of insoluble gel formed as a result of photocrosslinking is estimated gravimetrically. It is found that the PVC/PEO blendsí susceptibility to photooxidative degradation differs from that pure of the components and depends on the blend composition and morphology. Photoreactions such as degradation and oxidation are accelerated whereas dehydrochlorination is retarded in blends. The photocrosslinking efficiency in PVC/PEO blends is higher than in PVC; moreover, PEO is also involved in this process. AFM images showing the lamellar structure of semicrystalline PEO in the blend lead to the conclusion that the presence of PVC does not disturb the crystallization process of PEO. The changes induced by UV irradiation allow the observation of more of the distinct PEO crystallites. This is probably caused by recrystallization of short, more mobile chains in degraded PEO or by partial removal of the less stable amorphous phase from the film surface. These results confirm previous information on the miscibility of PVC with PEO. The mechanism of the interactions between the components and the blend photodegradation are discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 585–602, 2004  相似文献   

16.
用示差扫描量热法(DSC)研究了线形多嵌段聚氨酯(PU)与聚氯乙烯(PVC)、氯化聚氯乙烯(CPVC)共混相容性,说明了PU/VC、PU/CPVC的相容是由于共混物中形成了新的氢键的缘故.聚酯型聚氨酯与PVC、CPVC的相容性要好子聚酸型聚氨酯,CPVC与PU的相容性又要好于PVC.聚氨酯中硬段的引入不利于PU/PVC、PU/CPVC的相容性.  相似文献   

17.
Poly(propylene carbonate)/poly(β-hydroxybutyrate-co-β-hydroxyvalerate) (PPC/PHBV) blends were prepared via the solution casting method at different proportions. Their thermal characteristics were studied by means of differential scanning calorimetry (DSC) and thermogravimetry (TG). The degradability of the blends was investigated in soil suspension cultivation and in vitro degradation testing. The changes of structure and molecular weight for blends were also studied by 1H nuclear magnetic resonance spectroscopy (1H NMR), scanning electron microscopy (SEM) and gel permeation chromatography (GPC) before and after degradation. Although the PPC/PHBV blends were immiscible, the addition of PHBV could improve the thermal stability of PPC. PHBV was degraded mainly by the action of microbial enzymes in the soil suspension, which biodegraded it more rapidly than PPC in a natural environment. PPC was degraded mainly by chemical hydrolysis and random hydrolytic scission of chains in the PBS solution in vitro, and degradation of PPC was more rapid than that of PHBV in a simulated physiological environment.  相似文献   

18.
Thermal stability of poly(vinyl chloride)/poly(ethylene oxide) (PVC/PEO) blends has been investigated by thermogravimetric analysis (TGA) in dynamic and isothermal heating regime. PVC/PEO blends were prepared by hot-melt extrusion (HME). According to TG analysis, PEO decomposes in one stage, while PVC and PVC/PEO blends in two degradation stages. In order to evaluate the effect of PEO content on the thermal stability of PVC/PEO blends, different criteria were used. It was found that thermal stability of PVC/PEO blends depends on the blend composition. The interactions of blends components with their degradation products were confirmed. By using multiple heating rate kinetics the activation energies of the PVC/PEO blends thermal degradation were calculated by isoconversional integral Flynn–Wall–Ozawa and differential Friedman method. According to dependence of activation energy on degree of conversion the complexity of degradation processes was determined.  相似文献   

19.
张会良 《高分子科学》2015,33(3):444-455
Poly(propylene carbonate)(PPC) was melt blended in a batch mixer with poly(butylene carbonate)(PBC) in an effort to improve the toughness of the PPC without compromising its biodegradability and biocompatibility. DMA results showed that the PPC/PBC blends were an immiscible two-phase system. With the increase in PBC content, the PPC/PBC blends showed decreased tensile strength, however, the elongation at break was increased to 230% for the 50/50 PPC/PBC blend. From the tensile strength experiments, the Pukanszky model gave credit to the modest interfacial adhesion between PPC and PBC, although PPC/PBC was immscible. The impact strength increased significantly which indicated the toughening effects of the PBC on PPC. SEM examination showed that cavitation and shear yielding were the major toughening mechanisms in the blends subjected the impact tests. TGA measurements showed that the thermal stability of PPC decreased with the incorporation of PBC. Rheological investigation demonstrated that the addition of PBC reduced the value of storage modulus, loss modulus and complex viscosity of the PPC/PBC blends to some extent. Moreover, the addition of PBC was found to increase the processability of PPC in extrusion. The introduction of PBC provided an efficient and novel toughened method to extend the application area of PPC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号