首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
为替代传统的贵金属基NOx储存还原(NSR)催化剂,本文设计并制备了不含贵金属的BaFeO3-x+CuZSM-5耦合催化剂,用于催化消除稀燃发动机尾气中的NOx.在稀燃阶段,NO在BaFeO3-x催化剂上发生了氧化和储存反应;在富燃阶段,从BaFeO3-x催化剂中脱附出来未能消除的NOx被置于其后的Cu-ZSM-5催化剂进一步催化消除.实验结果表明,BaFeO3-x+Cu-ZSM-5耦合催化剂的工作温度窗口被拓宽到250-400°C,同时NOx消除性能得到了显著提高:NOx转化率最高可达98%,N2选择性接近100%.  相似文献   

2.
NOx的催化分解研究   总被引:1,自引:0,他引:1  
马涛  王睿 《化学进展》2008,20(6):798-810
氮氧化物(NOx)的直接催化分解是公认的消除NOx污染最有吸引力的方法。本文综述了NOx催化分解研究领域深受关注的几类催化剂,包括贵金属、金属氧化物、钙钛矿及类钙钛矿型复合氧化物、离子交换的ZSM-5型分子筛、杂多化合物和水滑石类材料等六大类催化剂。介绍了相关的反应机理、反应动力学和催化性能等问题的国内外研究进展,概括了上述催化剂的优缺点,提出了未来的发展方向。  相似文献   

3.
采用溶胶-凝胶法制备了Ba1-xMxFeO3 (M=Mg, Ca, Sr; x=0, 0.1, 0.2)系列钙钛矿型NOx储存还原(NSR)催化剂, 考察碱金属元素Mg、Ca 和Sr 的掺杂对BaFeO3 钙钛矿NOx 储存和氧化性能的影响. 结果表明, 在250-400 ℃范围内Mg的掺杂提高了BaFeO3钙钛矿的NOx储存性能, 其中以Ba0.8Mg0.2FeO3样品的NOx储存性能最佳, 在温度350 ℃时NOx储存量高达1200 μmol·g-1以上, NO→NO2转化率为53.4%. 与BaFeO3比较,Ba0.8Mg0.2FeO3样品在250 ℃进行NOx储存时就出现了单齿硝酸盐, 并随储存温度的变化而变化, 它的数量与NOx储存量有相同的变化趋势. 傅里叶变换红外(FTIR)光谱结果表明, 与BaFeO3相比, Ba0.8Mg0.2FeO3样品NOx储存量增大的原因在于: 一方面, 形成了具有A位缺陷的钙钛矿结构, 产生大量能够用于储存NOx的氧空位; 另一方面, 未进入钙钛矿晶格的Mg元素可能以碱性氧化物的形式与NOx作用形成了单齿硝酸盐.  相似文献   

4.
郭丽红  刘咏  孟明 《化学进展》2009,21(5):964-970
NOx 储存-还原(NSR)技术是最有前景的稀燃氮氧化物消除技术,自从日本丰田公司1996年首次提出NOx 储存还原这一概念后,一直受到研究者的广泛关注。本文综述了近十余年来NSR催化剂(PBA型、水滑石型、钙钛矿型)的研究进展,重点概述了目前比较公认的NOx储存-还原的反应路径,以及NSR催化剂的失活机制,包括H2O和CO2的负面影响,热失活和硫中毒问题,最后展望了NOx 储存还原技术未来的发展趋势。  相似文献   

5.
赵娇娇  余运波  韩雪  贺泓 《催化学报》2013,34(7):1407-1417
分别以La2O2CO3, CeO2, ZrO2和Al2O3为载体, 采用浸渍法制备了Ni基重整催化剂, 并以正十二烷模拟车载燃油进行催化重整反应以同时制备小分子碳氢化合物(HCs)和H2, 考察了其在4wt%Ag/Al2O3上选择性催化还原(HC-SCR)氮氧化物(NOx)的性能. 采用N2吸附-脱附、X射线粉末衍射、H2程序升温还原和热重等手段对Ni基催化剂进行了表征. 结果表明, 随着重整催化剂氧化还原性能增强, 产物中H2浓度增加, 可参与SCR反应的HCs含量减少, 从而导致重整-SCR耦合体系上NOx净化活性温度窗口向低温移动, NOx最高转化率降低. Ni/ZrO2+Ag/Al2O3耦合体系中H2/HCs符合SCR反应所需的最优比例, 在柴油车典型排气温度范围内表现出良好的NOx净化能力. 同时, 在Ni/ZrO2+Ag/Al2O3耦合体系上考察了其燃油重整-SCR的活性稳定性. 结果显示, 重整催化剂的耐久性有待进一步提高.  相似文献   

6.
基于实验室对柴油车用V2O5-WO3/TiO2催化剂配方以及涂覆成型技术的大量研究,设计了一条产量为6000只/月的NH3选择性催化还原NOx (NH3-SCR)催化剂中试生产线,并对生产的催化剂产品进行了发动机台架测试. 结果表明,实验室制备的V2O5-WO3/TiO2粉体催化剂和生产线产品,在空速为50000 h-1和200-450 ℃条件下NOx转化率均可达80%以上;采用大尺寸堇青石载体涂覆后制备的V2O5-WO3/TiO2整体催化剂经实验室小样测试,在空速为10000-30000 h-1和250-450 ℃条件下NOx转化率也为80%以上. 发动机台架测试结果表明,该催化剂产品可使重型柴油机NOx排放达到国IV标准中欧洲稳态循环(ESC)和欧洲瞬态循环(ETC)排放限值的要求. 该生产线经适当调整后也可用于生产非钒基NH3-SCR整体催化剂,以满足未来钒基NH3-SCR催化剂更新换代的需求.  相似文献   

7.
Cu对Pt/Cu-Mg-Al-O催化剂上NOx储存性能的影响   总被引:3,自引:0,他引:3  
固定二价与三价阳离子摩尔比为3∶1,采用共沉淀法合成系列Cu-Mg-Al水滑石,经500 ℃焙烧制成复合氧化物Cu-Mg-Al-O(wCuO(%)分别为0、5、10、20,简称w-CMAO, w=0、5、10、20).通过浸渍法制备Pt/Cu-Mg-Al-O负载型复合氧化物催化剂.XRD结果表明Cu在催化剂及其前驱体中高度分散.采用等温NOx储存实验研究催化剂对NOx的储存性能, NOx-TPD法考察储存的NOx脱附情况.实验结果表明,尽管Cu取代减少了催化剂中MgO含量,但增强了催化剂的NO氧化活性,有效提高了催化剂的NOx储存性能.同时TPD结果进一步表明当CuO掺杂量在w=(10~20)% 时,可以明显降低催化剂上生成的硝酸盐的分解温度.  相似文献   

8.
采用多种物理化学手段研究了在模拟的轻型柴油车尾气中不同Co担载量及Cu掺杂的Co/ZSM-5催化剂的Co组分分散状态、可还原性、NO吸附脱附性质对C3H8选择性催化还原NOx性能的影响。结果表明,浸渍法制备的Co/ZSM-5催化剂上既有外表面上的Co3+和Co2+物种,也有孔内的Co2+离子。富氧条件下Co/ZSM-5催化剂上C3H8选择性催化还原NOx的活性主要与ZSM-5载体孔外表面分散的CoOx物种中的钴离子可还原能力和NO吸附脱附性能密切相关。Co/ZSM-5催化剂上适宜的Co担载量约为4.0wt%,低担载量时随Co担载量增加,表面CoOx物种中钴离子可还原能力增强,C3H8选择性催化还原NOx的低温转化活性增加;高担载量时,随Co担载量增加,单位Co离子的NO吸附量的减少以及催化剂表面活性中心数的减少,导致了Co/ZSM-5催化剂NOx的转化率和催化剂比速率(k)的下降。孔外表面Co3O4晶体的存在使催化剂表面产生较强的NO吸附,并在高温时有利于C3H8的氧化燃烧,使C3H8选择性催化还原NOx的活性降低。  相似文献   

9.
通过软化学途径合成了铈钛混合氧化物(CeO2-TiO2)载体材料, 并分别通过等体积浸渍法和机械研磨法负载磷钨酸(H3PW12O40)。采用FTIR、XRD、SEM和BET比表面积测定对CeO2-TiO2及负载型多酸催化剂进行了表征;考察了负载量、负载方法、吸附温度等因素对催化剂吸附NOx效率的影响;选取吸附性能最佳的催化剂进行了NOx催化分解实验, 探讨了NOx吸附-分解机理。结果表明:相对于等体积浸渍法, 机械研磨法更适合此类载体负载H3PW12O40, 其NOx吸附效率均高于H3PW12O40及载体本身;在0~60%的负载量范围内, 随着H3PW12O40负载量的增加, 负载型催化剂吸附NOx的效率呈上升趋势, 负载量为40%时NOx吸附效率最佳, 达90%;吸附过程中NOx与催化剂活性组分H3PW12O40发生作用, 生成NOH+, H3PW12O40二级结构中结晶水对催化剂吸附NOx有重要作用;当温度从150℃升至 450℃时, 被吸附的NOx发生分解, 分解产物的组成与N2的收率均受升温速率的影响, 升温速率越快, N2收率越高。向吸附分解NOx后的催化剂床层通入含有水蒸气的空气, 可有效补充NOx分解过程中H3PW12O40失去的结晶水, 从而恢复催化剂优良的NOx吸附分解性能, 实现催化剂的有效再生利用。  相似文献   

10.
采用浸渍法模拟商业V2O5-WO3/TiO2脱硝催化剂的砷中毒,并对不同As/V摩尔比中毒的催化剂进行脱硝实验测试,发现随着As中毒程度加深,催化剂的NOx转化率随之降低.当测试温度为400℃时,新鲜V2O5-WO3/TiO2催化剂NOx转化率有96.45%,而当As/V摩尔比到0.2的时候,As中毒催化剂的NOx转化率降低至不足67%.采用XRD、BET、SEM、in situ DRIFTS和H2-TPR等多种表征方法对As中毒前后催化剂的物性结构、表面物质的存在形式以及氧化还原性能的对比研究,结果显示As2O3堵塞催化剂微孔结构,导致催化剂表面微孔数量的减少,As2O5涂覆催化剂表面,进而阻碍了气相成分参与多相催化反应;As的引入使得表面形貌略有变差,并未导致催化剂晶型的变化,且As及其化合物在催化剂表面分散度较高.As会与催化剂表面的羟基作用形成As-OH,抑制催化剂酸性,尤其对Lewis酸的抑制效果明显;As中毒后的催化氧化还原能力增强.  相似文献   

11.
贤晖  马爱静  孟明  李新刚 《物理化学学报》2013,29(11):2437-2443
采用溶胶-凝胶法制备了La0.7Sr0.3Co0.8Fe0.2O3钙钛矿催化剂,考察了还原剂种类(CO,C3H6,H2)对催化剂在氮氧化物储存还原(NSR)循环前后的氮氧化物储存量(NSC)和NO-to-NO2转化率的影响.O2程序升温脱附(O2-TPD)实验结果表明,CO还原后的钙钛矿催化剂上形成了较多的氧空位,而氧空位则是一种有效的NOx储存活性中心.活性测试和傅里叶红外变换(FTIR)光谱表征结果显示:在NSR循环中,以CO为还原剂时催化剂显示了最佳的氮氧化物(NOx)储存效果.进一步的研究结果显示,当采用CO作为还原剂时,经过三次NSR循环后,催化剂中出现了Sr3Fe2O7新物相,而该物相可能具有比La0.7Sr0.3Co0.8Fe0.2O3钙钛矿更佳的NOx储存性能.综上所述,CO作为还原剂时可能使钙钛矿催化剂产生更多的氧空位以及更易于储存NOx的Sr3Fe2O7物相,这些原因使其NOx储存性能得到了大幅度改善.  相似文献   

12.
研究了以多孔二氧化硅微球和活性炭为载体制备NOx吸附/还原催化剂的方法,摸索了最佳Ce/Co物质的量的比例。采用低温氮吸附方法测定了样品的BET比表面和孔容,利用XRD方法表征了样品中所掺杂的金属元素的晶型。研究发现:当nCe/nCo=75/25时,材料获得最佳NOx吸附能力,当以多孔二氧化硅微球作载体时,材料对于NOx的吸附主要来自CoOx和CeO2的二元氧化物;当以活性炭作为载体时,活性炭参与了NOx的吸附,因此其吸附容量大大提高。对NOx的吸附机理进行了探讨,并研究了样品的NH3还原性质。  相似文献   

13.
采用两步浸渍法和载体上的原位反应制备了一系列Cs部分取代的Ni-CsxH3-xPW12O40/SiO2催化剂,并用N2吸附比表面积测定(BET)、电感耦合等离子体发射光谱(ICP)、X射线衍射(XRD)、拉曼光谱(Raman)、原位X射线衍射(in situ XRD)、NH3程序升温脱附(NH3-TPD)、H2程序升温还原(H2-TPR)、H2程序升温脱附(H2-TPD)、吡啶吸附傅里叶变换红外(FTIR)光谱等分析测试技术对催化剂进行了表征. 以正癸烷为模型化合物,对催化剂的加氢裂化性能进行了评价. 结果表明,8%Ni-50%Cs1.5H1.5PW/SiO2催化剂具有最高的C5+收率,明显优于8%Ni-50%H3PW/SiO2催化剂和工业催化剂. 随着Cs 在CsxH3-xPW中比例的增加,正癸烷的转化率逐渐降低,而C5+选择性则逐渐提高. 当催化剂具有合适的孔径时,选择性的提高是由于催化剂酸性的减弱,而转化率的降低则是由于催化剂加氢能力的减弱.  相似文献   

14.
主要考察了NO2对Cu/SAPO-34 分子筛催化剂在整个温度范围内(100-500 ℃)NH3选择性催化还原(SCR)NO性能的影响. 研究所使用样品为新鲜Cu/SAPO-34 催化剂在750 ℃下水热处理4 h 的稳定期样品.通过X射线衍射(XRD)和扫描电子显微镜(SEM)对样品的结构以及形貌进行表征,采用SCR活性评价、动力学实验以及原位漫反射傅里叶变换红外光谱(in situ-DRIFTS)表征催化剂的性能以及催化剂表面物种的变化. 活性评价实验结果表明,NO2会抑制催化剂的低温(100-280 ℃)活性,但其存在会提高催化剂的高温(280 ℃以上)活性. 与此同时,随着反应物中NO/NO2的摩尔比例减少,由于NH4NO3物种的分解,副产物(N22O)的浓度增大. 动力学结果表明,Cu/SAPO-34 催化剂上快速SCR反应的表观活化能(Ea=64.02 kJ·mol-1)比标准SCR反应的表观活化能(Ea=48.00 kJ·mol-1)更大. In situ-DRIFTS实验结果表明NO比NO2更容易在催化剂表面形成硝酸盐,并且NO2更容易与吸附在Brønsted 酸性位上的NH3物种反应生成NH4NO3. 低温下,催化剂表面的NH4NO3物种会覆盖SCR反应的活性位,造成活性降低,但在高温时,形成的NH4NO3物种一部分会被NO还原为N2,而另一部分会直接热分解为N2O,造成催化剂的选择性降低.  相似文献   

15.
先以BaCO3和Bi2O3为原料由传统的固相反应制备纯BaBiO3,然后在低温下将用KOH-KF熔盐处理这样的拓扑反应合成了Ba1-xKxBiO3超导体. 所有样品均进行了粉末X射线衍射(XRD)和磁性表征. XRD结果表明,所得Ba1-xKxBiO3样品均为纯相,且均可用赝立方晶胞指标化. 磁性测量表明所有样品具有超导电性,最高超导转变温度(Tc)为30.6 K. 讨论了反应时间、前驱体与熔盐质量比对超导转变温度的影响. 最佳的反应条件为:反应温度450 ℃,反应时间4 h,BaBiO3:KOH:KF质量比1:5:2.5.  相似文献   

16.
Cerium based ZSM5 catalysts are used to study NO reduction with NH3 in the presence of oxygen with and without moisture. The Ce-ZSM5 was prepared by wet impregnation method and characterized by X-ray diffraction technique, BET surface and SEM. Ce-ZSM5 showed better NOx reduction than H-ZSM5 which is a poor catalyst for NOx reduction with NH3. The metal incorporation in H-ZSM5 has increased the catalytic activity. The catalytic activity showed significant difference in NOx conversion with and without moisture. The disperse Ce species are the active centers for the reduction of NO with NH3 in the presence of oxygen. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Metal promoted zirconia-based oxide sorbents, such as Pt–ZrO2/Al2O3 for NO x have been investigated. To clarify the role of the catalyst component, sorption of NO and NO2 was compared using the samples with and without Pt. The catalytic oxidation of NO to NO2 and successively to nitrate ions is an important role for the Pt catalyst. The experimental results indicate that a high-temperature calcination is essential to remove residual Cl from Pt–ZrO2–Al2O3 prepared from H2PtCl6 in order to provide more active NO x sorption sites. Of M–ZrO2–Al2O3 samples investigated, ruthenium as well as Pt demonstrated relatively good performance as a catalyst component in the sorbent. The FT-IR spectra after sorption of NO and NO2 demonstrated a strong band attributed to stored nitrate ions. The Pt catalyst was more resistant to sulfur poisoning than a base metal catalyst. However, the NO x sorptive capacities of the Pt–ZrO2/Al2O3 sorbents were expected to be deteriorated in dilute SO2 as far as observed from FT-IR spectra.  相似文献   

18.
NO3-type and NO2-type adsorbed species are formed on Cu-ZSM-5 together with adsorbed O species at 523 K in the decomposition of NO accompanied by the evolution of N2, N2O, and NO2. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号