首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
采用浸渍法制备系列Ru-La2O3/γ-Al2O3复合氧化物催化剂,通过XRD、H2-TPR、CO-TPR、XPS、BET等方法对催化剂进行表征,考察La2O3的加入量、预处理方法对催化剂上CO选择氧化性能的影响.结果表明,110-170℃时Ru1La6/Al2O3催化剂上CO转化率达到99%以上,氧气利用率达55.7%以上.和Ru/Al2O3相比,Ru1La6/Al2O3催化剂在较低温度具有高活性,活性温度区间变宽.适量La2O3的加入促进了活性组分在载体表面分散,提高了催化剂的活性.经氢气预处理的Ru1La6/Al2O3催化剂活性最佳,催化剂上Ru物种结合能降低,表面钌物种活性位增多,且表面晶格氧浓度增大,更有利于CO气体在催化剂表面上的氧化反应.  相似文献   

2.
甲烷部分氧化制合成气的La2O3助Ni/MgAl2O4催化剂   总被引:21,自引:2,他引:19  
 用MgO与载体Al2O3在高温下焙烧成MgAl2O4尖晶石,防止了Ni在反应过程中与载体形成NiAl2O4, 促进了Ni在载体表面的分散. 应用CODEX软件优化了La2O3在Ni/MgAl2O4催化剂中的加入量和活化温度. La2O3助Ni/MgAl2O4在本文实验条件下经100 h反应后活性和选择性均未发生变化. 程序升温烧碳结果表明,催化剂表面仅存在一种较高温度下才可除去的碳物种,它可能是石墨碳. XRD和BET结果证实,催化剂具有较高的结构稳定性. 荧光分析结果表明,在100 h的反应过程中活性组分未发生明显流失. 根据脉冲反应结果对以Niδ+-(La2O4-x)δ-作为氧的活性位和Ni0作为甲烷的活性位的直接氧化反应机理进行了初步探讨.  相似文献   

3.
La2O3助剂对Au/TiO2催化氧化CO性能的影响   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法制备了TiO2以及La2O3-TiO2载体,再用沉积沉淀法制备Au/TiO2和Au/La2O3-TiO2催化剂,并对催化剂的CO氧化反应活性进行测试.结果表明,La2O3助剂可以显著提高催化剂催化氧化CO的活性.X射线衍射(XRD)、程序升温脱附(TPD)、N2吸附-脱附(BET)表征结果表明,La2O3助剂不仅提高了催化剂比表面积,抑制了TiO2晶粒尺寸的长大,并且增强了TiO2的晶格应变,在O2气氛吸附过程中主要在TiO2表面形成O-物种.原位傅立叶变换红外(FT-IR)结果进一步表明,La的掺杂不仅提高了吸附在Au活性位CO的氧化速率,还使TiO2表面形成第二种活性位,从而显著提高了催化活性.  相似文献   

4.
 通过H2程序升温脱附实验,在H2还原的Ni/La2O3/α-Al2O3催化剂上可以明显观察到高温脱附氢(高温氢). 动力学实验结果表明,随催化剂上高温氢含量的增加, CH4/CO2重整反应的初始活性升高,同时高温氢也可在重整反应过程中原位生成,并使重整反应的活性最终达到稳定. 脉冲实验结果表明,随催化剂上高温氢含量的增加, CH4解离后生成的活性中间体CHx物种的x值也增大,进而降低了CHx与CO2反应的活化能,提高了CHx与CO2反应的速率. La2O3助剂的添加提高了Ni/La2O3/α-Al2O3催化剂上逆水气变换反应的速率,并且对CO2的活化也有促进作用. La2O3助剂的加入对于CH4/CO2重整反应的重要作用是使高温氢的数量增多且稳定性提高,有利于保持CHx物种中较高的x值,促进重整反应.  相似文献   

5.
低温甲烷氧化偶联Li- ZnO/La2O3催化剂   总被引:4,自引:0,他引:4  
采用浸渍法制备了Li- ZnO/La2O3催化剂并考察了其低温催化甲烷氧化偶联反应性能. 反应条件下, 在考察的w(Li)=2%和w(ZnO)=20%的Li- ZnO/La2O3在680 ℃得到了甲烷转化率为27.3%, C2选择性为65.2%, C2收率为17.8%的结果;在700 ℃, C2收率达到21.8%. Raman和XPS表征结果表明, 催化剂低温催化性能与表面的活性吸附氧物种含量相关;La2O2CO3物种可能是提高催化剂的C2选择性的关键.  相似文献   

6.
采用溶胶-凝胶法制备了TiO2以及La2O3-TiO2载体, 再用沉积沉淀法制备Au/TiO2和Au/La2O3-TiO2催化剂, 并对催化剂的CO氧化反应活性进行测试. 结果表明, La2O3助剂可以显著提高催化剂催化氧化CO的活性. X射线衍射(XRD)、程序升温脱附(TPD)、N2吸附-脱附(BET)表征结果表明, La2O3助剂不仅提高了催化剂比表面积, 抑制了TiO2晶粒尺寸的长大, 并且增强了TiO2的晶格应变, 在O2气氛吸附过程中主要在TiO2表面形成O-物种. 原位傅立叶变换红外(FT-IR)结果进一步表明, La的掺杂不仅提高了吸附在Au活性位CO的氧化速率, 还使TiO2表面形成第二种活性位, 从而显著提高了催化活性.  相似文献   

7.
张秀丽  贺泓  余运波 《催化学报》2007,28(2):117-123
 添加H2对Ag/Al2O3和Cu/Al2O3催化剂选择性催化C3H6还原NOx反应具有不同的影响. 原位漫反射红外光谱分析表明,在Ag/Al2O3催化剂上, H2的存在促进了C3H6部分氧化产物烯醇式物种(RCH=CH-O-)和乙酸盐等的形成,烯醇式物种和硝酸盐为主要反应中间体,二者间的相互反应性能很强,能形成高浓度的反应关键中间体异氰酸酯(-NCO)表面吸附物种,因此NOx的去除活性提高; 而在Cu/Al2O3催化剂上, H2的存在并没有促进C3H6部分氧化产物的形成,而且抑制了硝酸盐的形成,进而抑制了C3H6部分氧化产物与硝酸盐反应形成表面-NCO 物种,导致NOx的去除活性降低.  相似文献   

8.
ZrO2改性对Pt/Al2O3催化剂上CO氧化性能的影响   总被引:8,自引:1,他引:8  
用流动反应法、TPR和TPD-MS等技术研究了Pt/Al2O3催化剂掺杂ZrO2体系上CO的催化氧化反应、氧物种的还原及脱出-恢复行为.结果表明,掺杂ZrO2有利于催化剂上氧物种的脱出-恢复,从而促进CO氧化活性及表面活泼氧物种与氢的反应.并用催化剂集团结构适应理论对结果作出了解释.  相似文献   

9.
将孔密度为400cells/in2的Fe-20Cr-5Al金属蜂窝基体经过高温氧化后,负载Al2O3涂层,再浸渍贵金属铂,制备出用于CO选择性氧化的Pt/Al2O3涂层金属蜂窝催化剂.金属蜂窝基体经过900℃高温氧化10h后,表面呈现钉针状结构,这种结构可以提高基体与Al2O3涂层的相容性.最佳的Al2O3涂层负载顺序为乳胶-溶胶-乳胶.在120℃时,Pt/Al2O3涂层金属蜂窝催化剂的CO选择性氧化反应活性和选择性分别为54.0%和42.5%,为相同条件下陶瓷蜂窝催化剂的1.7和1.4倍.  相似文献   

10.
 采用湿浸法制备了用于蒽醌氢化制H2O2的La2O3促进的Pd/Al2O3催化剂,并考察了不同La2O3含量对催化性能的影响. 采用XRD,N2物理吸附,CO2-TPD,H2-O2滴定和电子探针等技术对催化剂进行了表征. 结果表明,加入适量的La2O3能够抑制高温焙烧时Al2O3晶粒的长大,增大催化剂的比表面积,提高金属Pd的分散度,增强载体表面碱性,提高催化剂表面的Pd浓度,减小Pd层厚度,从而提高催化剂的氢化活性. 加入La2O3可使催化剂的Pd负载量由0.281%降至0.188%,而催化剂活性提高了44%.  相似文献   

11.
富氧条件下Cu/Al2O3催化剂上C3H6选择性还原NO的研究   总被引:9,自引:0,他引:9  
以Cu/Al2O3为催化剂,对富氧条件下C3H6为还原剂选择性催化还原NO反应进行了研究.活性评价结果表明,与高活性的Ag/Al2O3催化剂相比,Cu/Al2O3催化剂选择性还原NO的活性较低,NO的最高转化率仅为40%.在所考察的温度范围(473~723K)内,红外谱图中不存在有机含氮化合物(R—ONO和R—NO2)的特征振动吸收峰.作为反应中间体—NCO的前驱体,有机含氮化合物在Cu/Al2O3催化剂表面难以生成是造成催化剂选择性还原NO活性低的直接原因.在Cu/Al2O3催化剂上,NO2吸附能够优先发生,并以NO3-物种的形式覆盖在大部分催化剂表面.动态原位红外光谱实验发现,这种NO3-表面物种与C3H6的反应性较差,使生成有机含氮化合物的关键反应难以发生,但此时的催化剂表面有利于C3H6和O2的完全氧化反应,这是导致Cu/Al2O3催化剂选择性较低的根本原因.  相似文献   

12.
Ni/Al2O3催化剂表面状态对CH4氧化反应的影响   总被引:3,自引:1,他引:2  
采用瞬变响应技术研究了常压700℃条件下气相O2、Ni/Al2O3催化剂表面上可逆吸附氧物种及催化剂的表面状态对CH4吸附、反应以及CH4部分氧化反应的影响,同时也对CH4部分氧化制合成气反应过程中催化剂表面所处的状态进行了研究.结果表明,如果催化剂表面处于氧化态,CH4不能吸附分解,只能通过RidealEley机理与催化剂表面的吸附氧进行非选择性氧化反应,这将严重影响CH4的转化和目的产物H2、CO的选择性.只有在还原的催化剂上,CH4部分氧化制合成气反应才能高转化、高选择性地进行.在CH4部分氧化制合成气反应过程中,催化剂表面处于还原态,不存在多余的中间氧物种NiO,但存在少量的碳物种,这有利于保持催化剂的还原态和抑制CO2的生成.  相似文献   

13.
CO2 在高分散 Ni/La2O3 催化剂上的甲烷化   总被引:1,自引:0,他引:1  
 以 La2O3 为载体, 采用浸渍法制备了 10%Ni/La2O3 催化剂, 考察了该催化剂的 CO2 甲烷化反应性能. 结果表明, 在较低的温度 (350 oC) 和高空速 (约 30000 h–1) 下, 甲烷时空收率可大于 3000 g/(kg•h), 无论转化率高低, 甲烷选择性始终保持在 100%. X 射线衍射和 H2-程序升温还原等表征结果表明, CO2 在 Ni/La2O3 催化剂上的加氢机理可能与 Ni/γ-Al2O3 上不同, 并且 La2O2CO3 的形成有利于提高催化剂活性.  相似文献   

14.
王爱菊  钟顺和 《催化学报》2004,25(2):101-106
 用等体积浸渍法制备了MgO-SiO2(MgSiO)复合氧化物负载的Ni-Cu双金属催化剂,采用程序升温还原(TPR),X光电子能谱(XPS),红外光谱(IR),程序升温脱附(TPD)及微反技术考察了稀土La2O3的加入对CH4和H2O在Ni-Cu/MgSiO催化剂表面上的吸附及甲烷部分氧化制氢反应性能的影响. 结果表明,加入La2O3使催化剂表面Ni和Cu原子的电子云密度增加,CH4和H2O在催化剂表面上的吸附增强. CH4与O2和H2O在Ni-Cu/MgSiO催化剂上反应的主要产物为H2和CO2. La2O3的加入有利于提高CH4转化率及H2的选择性,并可提高催化剂稳定性及抗积炭能力. 讨论了La2O3的助催化作用机理.  相似文献   

15.
ZrO2对CuO/γ—Al2O3催化剂CO氧化性能的影响   总被引:4,自引:2,他引:4  
用流动反应法、TPR、TPO和TG等技术研究了ZrO2的改性和CuO负载量对Cuo/y-Al2O3催化剂的氧化性能及还原行为的影响.实验结果表明,在低负载量(wCuO=15%以下)时,ZrO2对γ-Al2O3的改性可明显提高CuO/γ-Al2O3催化剂的CO氧化活性.ZrO2的存在可增加活性铜物种在载体表面的富集和有效地促进CU2+物种的氧化还原循环,增加CuO催化剂表面上铜物种的可还原量,从而促进CuO催化剂的氧化活性.  相似文献   

16.
对由Ru_3(CO)_(12)和RuCl_2制备的Ru/Al_2O_3催化剂进行的氧化预处理,显著地改变了催化剂在CO加氢反应中的选择性.在未经过氧化预处理或氧化预处理温度低于200℃时,主产物是C_2以上的烃类;而当氧化预处理温度在300℃或300℃以上时,主产物是甲烷.用H_2化学吸附法、TEM和XRD对y—Al_2O_3 载体上Ru粒子表征的结果表明:在H_2还原之后,载体上的Ru是一些粒径为10(?)左右的超微粒子或者这种超微粒子的聚集体,而在经过300℃或者更高温度下的氧化预处理及随后的还原之后,这些超微粒子或其聚集体转变成大的单晶.Ru粒子的这一微观形态的变化是引起催化剂选择性显著改变的根本原因.这—结果表明,对于负载型金属催化剂,不仅载体上金属粒子的分散度,而且这些金属粒子的微观形态也是决定催化剂在某些反应中的选择性的一个重要因素.  相似文献   

17.
钴和钾对Pt/γ-Al2O3上CO选择性氧化的助催化作用   总被引:4,自引:0,他引:4  
严菁  马建新  周伟  邬敏忠 《催化学报》2005,26(6):489-496
 添加Co或/和K助催化剂可在不同程度上改善Pt/γ-Al2O3催化剂对富氢气氛下CO选择性氧化的性能. 利用H2-TPR,CO-TPD和FT-IR等表征手段,探讨了不同助催化剂的作用机理. 结果表明,Co/Pt/γ-Al2O3能显著降低富氢气氛下CO选择性氧化的温度,主要原因是Co与Pt的相互作用使Pt的电子性能发生了改变,从而削弱了Pt对CO的吸附,使催化剂表面CO的线式吸附消失; Co的添加还促进了易分解的碳酸氢盐物种的生成,同时未完全还原的CoOx物种可提供活性氧促进CO的转化. 助催化剂K一方面促进了Pt向CO反馈电子,从而活化吸附的CO,提高了催化剂的低温活性;另一方面促进了难分解的甲酸盐物种的生成,从而抑制了部分活性位,需要更高的反应温度,而较高温度下会发生氢气氧化反应的竞争,使CO选择性氧化反应的活性和选择性受到影响. 同时添加K和Co的催化剂中,K可促进CoOx的还原,使Co与Pt的相互作用变弱,即减弱了Co对Pt的助催化作用, 因此虽然其选择性有所改善,但活性介于单独添加Co或K的催化剂之间.  相似文献   

18.
汽车尾气中主要污染成分 CO和 NOx可导致酸雨、光化学烟雾和臭氧空洞效应,对生物、环境及生态系统造成重大危害。污染源中 CO是性能优良的还原剂,如能不添加还原剂实现 CO催化还原 NOx,将成为最具经济技术优势的 NOx脱除技术。在富氧、低温条件下,利用 CO选择性催化还原 NOx为 N2,是目前选择性催化还原研究中的热点和难点。催化 CO还原 NOx常用的贵金属 Ir, Rh, Pt和Pd矿藏稀少,价格昂贵,有氧条件下活性急降,而分子筛催化剂和一些金属氧化物催化剂普遍存在反应温度高,尤其对 N2选择性差等问题。为解决上述问题,需寻找新的适合我国矿产资源的催化体系。研究发现,稀散金属基催化剂对氮氧化物的净化具有一定效果,因而可将我国的稀散金属资源优势转化为技术优势和经济优势。因此,本文以 TiO2-γ-Al2O3(TA)为载体, In/Ag为活性组分,采用等体积浸渍法制备了 InAg/TA以及 In/TA, Ag/TA和InAg/Al (γ-Al2O3为载体)催化剂,考察了贫燃条件下 CO选择性还原NO的催化活性。研究表明,双金属催化剂InAg/Al和 InAg/TA的活性比单金属催化剂In/TA和 Ag/TA高, In/TA催化剂中引入 Ag物种能降低起燃温度;另外,相比于InAg/Al催化剂, InAg/TA催化剂具有较高的催化活性,550?600°C时 N2产率超过60%,说明载体中引入TiO2可以提高催化剂活性。为了深入研究 InAg/TA催化剂中 Ag物种和TiO2对 In物种的作用,通过比表面测定、X射线衍射(XRD)、透射电子显微镜(TEM)、X射线光电子能谱、紫外-可见光吸收光谱、氢气程序升温还原、傅立叶变换红外线光谱等方法分析了催化剂结构和表面形态。结果表明, Ag物种可以提高 In物种的分散性, In和 Ag物种在 TA载体表面可以很好地分散,从而有利于提高催化活性。 In和 Ag物种在 TA载体表面以氧化态形式存在,并且 Ag物种可以提高 In物种表面含量,表面 In和 Ag物种含量越高,吸附活性位越多,催化活性越高;同时, TiO2也可以促进 NO吸附,从而提高 InAg/TA催化剂活性。 InAg/TA催化剂在450°C连续反应72 h进行稳定性测试,测试前后分别在50?600°C进行活性测试,并用 XRD和 TEM对反应后的催化剂进行表征测试。结果表明, InAg/TA催化剂具有较好的稳定性,连续反应前后催化剂活性基本保持不变,推测可能由于在有 CO和O2存在的体系中, Ag物种利用自身 Ag+与 Ag0之间的氧化还原反应抑制了活性组分 In2O3的还原和聚集,稳定了 In物种乃至催化剂活性。 InAg/TA催化剂用于贫燃条件下CO还原NO具有较好的催化效果,主要归因于催化剂活性组分分散性好,稳定性高,对NO吸附能力强。 Ag物种可以稳定In物种并提高其分散性, TiO2可以改善In物种和Ag物种的分散性并促进NO吸附。  相似文献   

19.
通过等体积浸渍法并分别经过H2和O3活化制备了系列1·1%Au/LaFeOx/Al2O3催化剂,考察了其在550℃经1·0%CO原料气处理后的CO氧化活性.Fe和La的引入虽然使1·1%Au/Al2O3的初始活性降低,但提高了其高温稳定性.在550℃经1·0%CO原料气预处理2h后,H2活化的1·1%Au/Al2O3在室温完全失活,而同样条件处理的1·1%Au/2%LaFeO3/Al2O3仍能将65%CO转化;这可能是由于LaFeO3以钙钛矿形式单层分散在Al2O3表面而导致的.O3活化能进一步提高催化剂的稳定性,在550℃经原料气预处理后,O3活化的1·1%Au/2%LaFeO3/Al2O3的活性高于1·1%Au/Al2O3和H2活化的1·1%Au/2%LaFeO3/Al2O3.1·0%CO原料气预处理10h后,H2活化的1·1%Au/2%LaFeO3/Al2O3完全失活,而O3活化的催化剂仍具有40%的转化率,这可能是由于O活化使得催化剂中存在部分氧化的金,增强了金属与载体间的相互作用.  相似文献   

20.
La2O3助剂对CH4部分氧化制氢Ni-Cu/ZrSiO催化剂的影响   总被引:1,自引:4,他引:1  
用等体积浸渍法制备了ZrO2-SiO2(ZrSiO)表面复合氧化物负载的Ni-Cu双金属催化剂,并用TPR、XPS、IR、TPD及微反技术考察了稀土La2O3助剂对CH4和H2O在Ni-Cu/ZrSiO催化剂表面上的吸附及甲烷部分氧化制氢反应性能的影响。结果表明,加入La2O3助剂使催化剂表面Ni, Cu原子电子云密度增加,CH4和H2O在催化剂表面上的吸附增强;在反应温度450 ℃、进料摩尔比n-CH4∶nO2∶nH2O=1∶0-5∶2-5以及甲烷空速SV(CH4)=1 200 h-1的条件下,催化剂Ni-Cu-La2O3/ZrSiO上CH4转化率大于90%,生成H2的选择性高于99%,副产物CO的选择性仅为1.1%。根据实验结果,讨论了La2O3助催化剂的作用机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号