首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用溶剂热法一步合成氨基改性的Fe_(2)O_(4)(NH_(2)-Fe_(3)O_(4))纳米材料,通过扫描电镜、红外光谱、X射线衍射等方法对合成纳米材料进行表征,并将NH_(2)-Fe_(3)O_(4)滴涂在玻碳电极(GCE)表面制成电化学传感电极(NH_(2)-Fe_(3)O_(4)/GCE)。结果发现,NH_(2)-Fe_(3)O_(4)/GCE在最优条件下可以同时测定Cd^(2+)和Pb^(2+),Cd^(2+)在1.2×10^(-8)~9.6×10^(-5)mol·L^(-1)浓度范围内与峰电流值呈良好的线性关系(R=0.9949),检测限为1.4×10^(-9)mol·L^(-1);Pb^(2+)在4.8×10^(-8)~9.6×10^(-5)mol·L^(-1)时浓度范围内与峰电流值呈良好的线性关系(R=0.9843),检测限是2.7×10^(-9)mol·L^(-1)。  相似文献   

2.
本实验采用水热法合成了Co_(3)V_(2)O_(8)纳米粒子,并将其滴涂至玻碳电极(GCE)上形成Co_(3)V_(2)O_(8)修饰电极,通过循环伏安法(CV)和差分脉冲伏安法(DPV)测试了修饰电极的电化学性能,并用于检测水中的对硝基苯酚。研究了Co_(3)V_(2)O_(8)的修饰量、电解质缓冲溶液的pH值和扫描速率对修饰电极的电催化性能的影响。研究结果表明,在优化的实验条件下,经Co_(3)V_(2)O_(8)修饰过的电极对对硝基苯酚表现出优异的检测性能,其线性范围和检出限分别为0.33~3000μmol·L^(-1)和0.08μmol·L^(-1)。该修饰电极具有良好的选择性、重复性与稳定性,应用于实际水样目标物的检测,回收率在95.7%~102.7%之间。  相似文献   

3.
以邻苯二胺为功能单体,赛诺吗嗪为印迹分子,采用电化学聚合法在石墨烯修饰的金电极上制备了可快速测定赛诺吗嗪的分子印迹电化学传感器。考察了功能单体的选择、石墨烯修饰金电极、扫描圈数等参数对该传感器性能的影响,利用循环伏安法、差分脉冲伏安法和电化学阻抗法对该传感器进行表征。赛诺吗嗪的线性范围为6.0×10^(-9)~6.0×10^(-4) mol·L^(-1),检出限(3s/k)为1.0×10^(-9) mol·L^(-1)。加标回收率在88.0%~102%之间,测定值的相对标准偏差(n=5)在2.0%~3.5%之间。  相似文献   

4.
玻碳电极(GCE)经抛光、清洗干净、干燥后,放入含1.0×10^(-4)mol·L^(-1)鸟氨酸的磷酸盐缓冲溶液(PBS,pH 8.0)中,以GCE为工作电极、Ag/AgCl电极为参比电极、铂丝电极为对电极,在10 mV·s^(-1)扫描速率下于-1.8~2.3 V内循环扫描12段,取出修饰后的电极,用水清洗、干燥后即得聚鸟氨酸修饰的玻碳电极(POrn/GCE)。取盐酸肾上腺素注射液(1 mL∶1 mg) 0.72 mL,用PBS稀释至50 mL,分取10 mL置于25 mL的小烧杯中,搅拌130 s,以POrn/GCE为工作电极的三电极体系下进行循环伏安法(CV)扫描,扫描电位为-0.4~1.0 V,扫描速率为0.08 V·s^(-1)。结果显示:肾上腺素在POrn/GCE上的氧化/还原峰电位(E_(pa)、E_(pc))和在GCE上的基本一致,氧化/还原峰电流(|i_(pa)|、i_(pc))分别为39.9,15.6μA,较GCE上的(15.3,1.66μA)明显增加,同时,溶剂对肾上腺素的测定无干扰,说明修饰电极对肾上腺素具有较好的电催化作用;E_(pa)与pH呈负相关线性关系,曲线斜率的绝对值(0.058 7)接近0.059,说明电极反应是一个有质子参与的过程,且参与反应的质子数和电子数相同;|i_(pa)|与扫描速率呈线性关系,说明电极反应过程由吸附控制。肾上腺素的浓度在2.0~100μmol·L^(-1)内与其对应的|i_(pa)|呈线性关系,检出限为0.13μmol·L^(-1);100倍的尿素、色氨酸、甘氨酸和赖氨酸,50倍的Cd^(2+)和Ca^(2+),10倍的Al^(3+)和Fe^(3+)都不干扰肾上腺素的测定;用修饰电极重复分析标准溶液6次,测定值的相对标准偏差(RSD)为3.9%,将修饰电极放置7 d,|i_(pa)|较初始值减少了不到3.0%;对实际样品进行加标回收试验,测定值与标签值基本一致,回收率为97.6%~102%。  相似文献   

5.
基于多壁碳纳米管(MWCNTs)和聚十六烷基三甲基溴化铵(p-CTAB)的高导电性、高增敏性,制备了MWCNTs、p-CTAB修饰的玻碳电极(GCE),将其作为工作电极(MWCNTs/p-CTAB/GCE),用于快速测定水和土壤中双酚A(BPA)的含量。以GCE为工作电极,采用循环伏安法(CV)对0.5 g·L^(-1) CTAB溶液扫描20圈,得到p-CTAB修饰的GCE(p-CTAB/GCE);吸取1.96 g·L^(-1) MWCNTs标准溶液5μL,滴涂在p-CTAB/GCE表面,干燥后得到MWCNTs/p-CTAB/GCE。水样经过滤,分取2 mL与0.3 mol·L^(-1)磷酸盐缓冲溶液(pH 7.0)8 mL混匀后待测;土壤样品25 g经风干、研磨、过筛后,用乙醇50 mL提取两次,浓缩至约1 mL,用无水乙醇定容至10 mL,分取2 mL与0.3 mol·L^(-1)磷酸盐缓冲溶液(pH 7.0)8 mL混匀后待测。以MWCNTs/p-CTAB/GCE为工作电极,钛棒为对电极,饱和甘汞电极为参比电极,设置搅拌速率为800 r·min^(-1),于0.2 V富集待测样品溶液中的BPA 150 s,采用差分脉冲伏安法(DPV)测定BPA的含量。扫描电子显微镜表征结果显示,MWCNTs/p-CTAB/GCE表面呈多孔空隙和多孔网状结构。以DPV、CV和电化学阻抗谱法考察了BPA在MWCNTs/p-CTAB/GCE上的电化学行为,结果表明BPA在该电极上的电化学氧化反应是一个受吸附控制的不可逆反应,BPA的浓度在0.08~20μmol·L^(-1)内与其对应的氧化峰电流呈线性关系,检出限为0.02μmol·L^(-1)。用同一支MWCNTs/p-CTAB/GCE重复测定BPA标准溶液10次,测定值的相对标准偏差为5.0%。对实际样品进行加标回收试验,BPA的回收率为82.0%~106%,测定值的相对标准偏差(n=5)为1.6%~8.1%。  相似文献   

6.
用恒电位沉积法制备了金纳米修饰玻碳电极(GNP/GCE),并利用循环伏安法研究了邻苯二酚和对苯二酚在该修饰电极上的电化学行为。结果表明,在p H=6.5的磷酸盐缓冲液中,邻苯二酚和对苯二酚在该修饰电极上均出现一对准可逆氧化还原峰,峰电位分别为:Epa=0.250 V、Epc=0.220 V和Epa=0.140 V、Epc=0.100V。在最佳测定条件下,邻苯二酚和对苯二酚在1×10-6~8×10-5mol·L-1的浓度范围内线性良好,检出限分别为3.7×10-7mol·L-1,2.4×10-7mol·L-1。该方法用于模拟水样和茶叶中邻苯二酚和对苯二酚的测定,结果满意。  相似文献   

7.
以三聚氰胺为原料,利用热缩聚法制备了类石墨氮化碳(g-C_3N_4),并采用X射线衍射(XRD)、扫描电镜(SEM)、红外光谱等方法对其进行表征。然后将g-C_3N_4超声分散于Nafion溶液中,将所得悬浊液修饰到玻碳电极上,制备用于检测硝基苯的电化学传感器(g-C_3N_4/Nafion/GCE)。采用循环伏安法、方波伏安法研究了硝基苯在该电极上的电化学行为。在优化实验条件下,硝基苯在该电极上的方波伏安还原峰电流与其浓度在4.0×10~(-6)~6.0×10-4mol/L范围内呈良好的线性关系,相关系数(r)为0.999 8,检出限为4.0×10~(-7)mol/L。按照国家标准方法对实际水样进行检测,未检测出硝基苯。配制两个浓度水平硝基苯的模拟水样进行加标回收实验,其回收率分别为102.1%和99.9%。用气相色谱法做对照实验,结果表明本方法与气相色谱法的测定结果无显著性差异。  相似文献   

8.
在玻碳电极上成功制备了多壁碳纳米管修饰电极(MWCNTs/GCE),优化了该修饰电极的制备条件.研究了联吡啶钌和盐酸氯丙嗪在该修饰电极上的电化学行为和电化学发光行为,建立了电化学发光法测定尿液中盐酸氯丙嗪的分析方法.结果表明,联吡啶钌-氯丙嗪体系在MWCNTs/GCE上表现出很好的电化学活性和电致化学发光响应,多壁碳纳米管不但增大了玻碳电极的比表面积而且加快了联吡啶钌在电极表面的电化学氧化,对联吡啶钌的电化学发光强度具有明显的增敏作用,同时盐酸氯丙嗪对联吡啶钌在该修饰电极上的电致化学发光具有很强的增敏作用.在0.1 mol/L的磷酸盐(pH 7.5)缓冲溶液中,盐酸氯丙嗪在该修饰电极上的检出限(S/N=3)为6.0×10-7 mol/L,在1.0×10-6 ~4.0×10-4 mol/L范围内浓度与相对发光强度呈线性关系(r=0.995 2).连续测定6.0×10-5 mol/L的盐酸氯丙嗪溶液13次,发光强度的RSD值为2.50%,表明该修饰电极具有较好的重复性.该方法已经成功地应用于尿样的检测.  相似文献   

9.
基于盐酸氯丙嗪对联吡啶钌电化学发光的增敏作用,以石墨烯(Graphene)和Nafion复合膜修饰的玻碳电极(GCE)为工作电极,建立了一种直接测定盐酸氯丙嗪的电化学发光新方法。最佳实验条件下,盐酸氯丙嗪浓度在8.0×10-7~1.2×10-4mol/L范围内与其相对发光强度呈良好线性关系(r=0.998 8),且在该修饰电极上的检出限(S/N=3)为4.0×10-7mol/L。连续测定4.0×10-6mol/L盐酸氯丙嗪溶液11次,发光强度值的相对标准偏差(RSD)为1.4%,表明该修饰电极具有较好的重复性和灵敏度。盐酸氯丙嗪的加标回收率为93%~104%,RSD(n=5)为4.1%。将该方法应用于药片中盐酸氯丙嗪的检测,结果满意。  相似文献   

10.
g-C_3N_4作为丰富的可见光光催化剂,具有独特的二维结构,优异的化学稳定性和可调的电子结构;但因其激子结合能高和结晶度较低,导致其光催化过程量子效率偏低,限制了光催化剂的推广应用.根据g-C_3N_4独特的可调电子结构,将其与半导体材料进行耦合,形成异质结构,通过调控半导体的能带结构,优化其光吸收能力,促进光生电子-空穴对的快速分离,从而抑制光生载流子的复合,提高其光催化效率.目前,人们已发展了许多g-C_3N_4与窄禁带和宽禁带半导体耦合形成的二元纳米复合材料,广泛应用于光催化降解污染物、光催化水解产氢和光催化还原将温室气体CO_2转换成有用的碳氢燃料等方面,但关于g-C_3N_4基的三元复合光催化剂,尤其与天然纳米材料DNA复合,研究其电催化性能的却鲜有报道.近年来,随着环境污染日益严重,被称为环境激素的五氯酚(PCP)、壬基酚(NP)等一系列环境激素在水体和土壤等环境介质中长期残留,难以降解,且容易聚集在生物体内,通过空气循环和食物链等方式进入人体,对环境和人体产生极大的危害,所以越来越多的人致力于环境激素的高效筛选和检测的研究.常规的分析方法已经很难满足人们对环境激素的高灵敏检测的要求,而电化学方法因其操作简单、成本低廉、选择性好、灵敏度高、样品前处理简单等特点而备受关注.本文成功设计和制备了g-C_3N_4-ZnS-DNA三元纳米复合材料.首先,采用水热法制备了ZnS半导体纳米片,采用热解法制备了g-C_3N_4纳米片,接着将它们与DNA复合,成功制备了g-C_3N_4-ZnS-DNA纳米复合材料,通过苯胺聚合法修饰到玻碳电极表面,成功构建了NP和PCP环境激素新型的电化学传感器.通过透射电镜、X射线衍射、紫外-可见漫反射光谱和X射线光电子能谱等对其形貌、结构及组分进行了表征.采用CHI660C仪器对新型的电化学传感器的电催化性能进行了系统研究.通过循环伏安法(CV)和示差脉冲伏安法(DPV)研究了NP和PCP在g-C_3N_4-ZnS-DNA-GCE修饰电极的上的电化学行为.电化学阻抗谱表明,g-C_3N_4-ZnS-DNA纳米复合材料大大促进了修饰电极的电子传递能力,与g-C_3N_4膜相比,ZnS和DNA共掺杂的g-C_3N_4膜对NP和PCP的电化学响应明显提高,峰电流是g-C_3N_4膜的2倍,电催化活性明显增强.在最优化条件下,NP和PCP检测的线性范围分别为2.0×10~(-5)-1.0×10~(-8)和1.0×10~(-5)-1.0×10~(-8)mol L~(-1),检出限均为3.3×10~(-9)mol L~(-1).将g-C_3N_4-ZnS-DNA-GCE修饰电极用于湖水中NP和PCP的测定,其回收率均高于90%,证明g-C_3N_4-ZnS-DNA纳米复合材料修饰电极可应用实际水样中痕量环境激素的测定.同时,我们分析了电催化活性增强的原因:(1)DNA分子通过C-O-C键连接到g-C_3N_4表面,导致ZnS纳米片组装成线性超结构,形成稳定的g-C_3N_4-ZnS-DNA纳米复合材料;(2)由于DNA和PCP或NP之间的相互作用使得电极表面上的PCP和NP的浓度增加;(3)纳米复合材料聚苯胺膜可促进电子转移和加速PCP或NP向电极表面的扩散;并提出了Z型g-C_3N_4-ZnS-DNA纳米复合材料的电子转移路径,以及PCP和NP的可能的电催化氧化机理.  相似文献   

11.
制备了硫化镉量子点-壳聚糖(CdS-CS)复合物修饰的玻碳电极(GCE),记作CdS-CS/GCE。以卡那霉素为模板分子,3-氨基苯硼酸(APBA)为功能单体,采用循环伏安法在CdS-CS/GCE表面电聚合得到了分子印迹聚合物(MIP)膜,所制备的传感器记作MIP/CdS-CS/GCE。卡那霉素可与传感器表面的MIP特异性结合,占据印迹孔穴,阻断共反应剂K2S2O8扩散到电极表面的通路,使电化学发光强度减弱。以传感器在空白溶液中的电化学发光强度(I0)与传感器在卡那霉素标准溶液中的电化学发光强度(I)的差值ΔI(ΔI=I0-I)作为响应信号,在优化的试验条件下,响应信号ΔI与卡那霉素浓度的对数值在1.0×10-11~1.0×10-7mol·L-1内呈线性关系,相关系数为0.999 0,检出限(3S/N)为5×10-12mol·L-1。按标准加入法对实际样品进行回收试验,...  相似文献   

12.
基于盐酸氯丙嗪对联吡啶钌电化学发光的增敏作用,以石墨烯(Graphene)和Nafion复合膜修饰的玻碳电极(GCE)为工作电极,建立了一种直接测定盐酸氯丙嗪的电化学发光新方法。最佳实验条件下,盐酸氯丙嗪浓度在8.0×10-7 ~1.2×10-4 mol/L范围内与其相对发光强度呈良好线性关系(r=0.998 8),且在该修饰电极上的检出限(S/N=3)为4.0×10-7 mol/L。连续测定4.0×10-6 mol/L盐酸氯丙嗪溶液11次,发光强度值的相对标准偏差(RSD)为1.4%,表明该修饰电极具有较好的重复性和灵敏度。盐酸氯丙嗪的加标回收率为93%~104%,RSD(n=5)为4.1%。将该方法应用于药片中盐酸氯丙嗪的检测,结果满意。  相似文献   

13.
在玻碳电极上制备了碳纳米管负载纳米铂修饰电极(Pt-MWCNTs/GCE)。考察了联吡啶钌和富马酸酮替芬在3个不同电极上的电化学及其发光行为,并对其进行了对比。结果表明,在Pt-MWCNTs/GCE上富马酸酮替芬对联吡啶钌的电化学发光强度有明显的增敏作用,其增敏效果约为MWCNTs/GCE电极的2倍,约为裸玻碳电极的3.5倍,据此,建立了一种Pt-MWCNTs/GCE电极上电化学发光法检测富马酸酮替芬的新方法。在优化实验条件下,富马酸酮替芬的浓度在1.0×10-7~1.0×10-4mol/L范围内与其相对发光强度呈线性关系,线性回归方程为I=48.805×106c+221.03(r=0.9969),检出限为2.4×10-9mol/L,连续平行测定1.0×10-5mol/L的富马酸酮替芬溶液5次,发光强度的RSD为3.3%。对样品进行回收率实验,回收率为99%~104%,RSD为2.1%。  相似文献   

14.
首先在非水介质中通过电化学氧化将L-酪氨酸以C-N键共价键合在玻碳电极表面,形成L-酪氨酸接枝单层膜.再在L-酪氨酸功能化的玻碳电极上对邻苯二胺进行电化学聚合,从而制备了聚邻苯二胺/L-酪氨酸复合膜修饰玻碳电极(聚-o-PD-Tyr/GCE).研究发现聚-o-PD-Tyr/GCE在pH 6.8的磷酸缓冲溶液(PBS)中对抗坏血酸的电化学氧化具有催化作用,其氧化电位为0.35 V,比在裸玻碳电极上(0.58 V)降低了0.23 V,峰电流也明显升高.抗坏血酸在修饰电极上响应电流与其浓度在2.5×10-4~1.5×10-3mol·L-1范围内呈线性关系,检出限(3s/k)为43.64μmol·L-1.经修饰的电极保存在0.1 mol·L-1PBS中,可至少稳定5d.对5×10-4mol·L-1抗坏血酸溶液连续测定10次,测得此电极的相对标准偏差为3.2%.  相似文献   

15.
郑志祥  王玫  李江  宫雪  王春明 《分析测试学报》2019,38(10):1220-1227
利用表面具有丰富π电子的三聚氰胺(MAM)和单壁碳纳米管(SWCNTs)作为前驱体,通过固体研磨-热聚合法使二者通过π-π静电作用堆叠得到类石墨相氮化碳(Graphitic carbon nitride,g-C_3N_4)-SWCNTs复合材料,然后利用Na_2PdCl_4为Pd纳米粒子前体,通过自组装对g-C_3N_4-SWCNTs进行功能化修饰,得到Pd/g-C_3N_4-SWCNTs复合物。采用SEM、TEM、XRD、FTIR对该复合材料的形貌和组成进行表征,并利用循环伏安等电化学方法研究了该材料对雌二醇(E2)的电催化氧化性能。结果显示,雌二醇在Pd/g-C_3N_4-SWCNTs修饰电极上的响应电流明显大于其在g-C_3N_4、g-C_3N_4-SWCNTs修饰电极和裸玻碳电极上的响应。在优化实验条件下,采用示差脉冲伏安法考察了基质样品中E2的氧化峰电流与其浓度的关系,其氧化峰电流强度与其浓度在5~150μmol/L范围内呈良好的线性关系,线性方程为:I_(pa)(μA)=0.834 7+0.007 0C_(E2)(r=0.990),检出限(LOD,S/N=3)为1.7μmol/L。该传感器具有良好的稳定性和选择性,且与HPLC在方法学上无显著性差异,可满足饲料样品中E2的检测需求。  相似文献   

16.
以部分电化学还原的氧化石墨烯(pErGO)修饰的玻碳电极(GCE)作为工作电极(pErGO/GCE),用于苦参碱(MT)含量的电化学测定。在活化好的GCE上滴涂氧化石墨烯(GO),用恒电位法在-0.75 V下还原GCE表面的GO 200 s,得到的电极即为pErGO/GCE。以0.1 mol·L~(-1) NaH_2PO_4-Na_2HPO_4缓冲溶液(pH 7.0)作为电解质,铂丝作为对电极,Ag/AgCl作为参比电极,在开路电位下富集样品中的MT 120 s,采用差分脉冲伏安法(DPV)测定MT含量。结果显示:MT的浓度在8.0×10~(-6)~1.0×10~(-4)mol·L~(-1)内与其对应的氧化峰峰电流呈线性关系,检出限(3S/N)为4.0μmol·L~(-1)。用修饰电极重复测定MT标准溶液5次,所得测定值的相对标准偏差(n=5)为1.8%。对实际样品进行加标回收试验,回收率为94.8%~104%。方法用于实际样品分析,MT的测定值与标示值的相对偏差为-5.9%。  相似文献   

17.
将1.00g·L~(-1) DNA溶液与1.00mmol·L~(-1)三氯化铁溶液混合制得DNA-Fe(Ⅲ)配合物溶液。取溶液20μL滴涂于经抛光的GCE表面,滴加0.50g·L~(-1) CTS溶液10μL,于20℃干燥22h制得DNA-Fe/CTS修饰的GCE电极。利用扫描电子显微镜对DNA-Fe/CTS BPICM的形貌进行了表征。采用循环伏安法和安培-时间曲线法研究该修饰电极的电化学特性及该电极对过氧化氢的电化学响应。结果表明,固定在聚合膜中的铁离子表现出较好的电化学活性,DNA-Fe/CTS/GCE对过氧化氢的还原反应具有较好的电催化活性。由此提出了一种新型生物相容性过氧化氢电化学传感器。该传感器的线性范围为0.01~2.0mmol·L~(-1),检出限(3S/N)为3μmol·L~(-1)。  相似文献   

18.
通过微波处理制备了具有优异光催化固氮性能的磷掺杂石墨相氮化碳(g-C_(3)N_(4))催化剂.采用XRD、N_(2)吸附、UV-Vis、SEM、XPS、ESR、PL等测试手段对制备的催化剂进行了表征.结果表明,P掺杂与微波处理工艺相结合能破坏g-C_(3)N_(4)中平面对称性的结构单元,激发了n-π^(*)电子跃迁过程.制备催化剂的吸收边界从465移动至600 nm处,明显促进了对可见光的吸收.P掺杂和微波处理的协同效应也提高了催化剂的比表面积和电子空穴对的分离效率.制备的催化剂的NH_(4)^(+)产率最高达到6.5 mg·L^(-1)·g_(cat)^(-1),是纯g-C_(3)N_(4)的13.5倍以上,且具有良好的光催化稳定性,为拓宽催化剂的光响应范围提供了新的途径.  相似文献   

19.
为了提高金属纳米粒子在石墨烯片上的分散度,通过组氨酸功能化石墨烯量子点(His-GQD)作为桥梁,设计合成银铜双金属/His-GQD/石墨烯杂化物(AgCu/His-GQD/G)。His-GQD通过π-π堆积作用固定到氧化石墨烯上,然后与银离子和铜离子结合形成复合物,最后在氮气保护下热还原获得AgCu/His-GQD/G。形成的杂化物表现出独特的三维结构,且银、铜纳米粒子均匀分散在石墨烯片上。基于该杂化物构建了电化学适配体传感器,适配体与杂化物上的银、铜纳米粒子通过Ag-N和Cu-N键连接而修饰到电极表面上,用于毒死蜱、克百威和多菌灵的测定,表现出高的灵敏度和选择性。毒死蜱、克百威和多菌灵标准曲线的线性范围分别为1.00×10^(-2)~1.00×10^(3)pmol·L^(-1)、1.00×10^(-1)~1.00×10^(4)pmol·L^(-1)和1.00~1.00×10^(6)pmol·L^(-1),检出限(3S/N)分别为3.2×10^(-3)pmol·L^(-1)、2.3×10^(-2)pmol·L^(-1)和2.9×10^(-1)pmol·L^(-1)。该适配体传感器用于黄瓜样品中克百威、毒死蜱和多菌灵的测定,仅检出多菌灵,检出量为1.21 pmol·L^(-1)和1.25 pmol·L^(-1);并按标准加入法进行回收试验,回收率为99.3%~100%。  相似文献   

20.
将玻碳电极(GCE)置于0.01 mol·L-1甘氨酸的[Bmin]PF6离子液体溶液中,于0~2.0 V电位间以50 mV·s-1扫描速率进行循环伏安扫描10圈,从而制成通过C-N共价键结合的甘氨酸修饰玻碳电极(Gly/GCE)。将此修饰电极置于0.1 mol·L-1氯化镍溶液中浸泡6 h,镍(Ⅱ)就吸附于甘氨酸修饰层上,制成了吸附着镍(Ⅱ)的Gly/GCE,记作Ni(Ⅱ)-Gly/GCE。此电极在0.1 mol·L-1氢氧化钠溶液中由于Ni2+/Ni3+电对的媒介作用对葡萄糖产生无酶催化氧化反应,导致在+0.55 V(vs.SCE)处氧化峰电流明显增高,电流响应值与葡萄糖浓度在1×10-6~2×10-3mol·L-1范围内呈线性关系,其检出限(3S/N)为3×10-7mol·L-1。据此,提出了测定葡萄糖的计时电流法,并应用于血清样品中葡萄糖的测定,所得结果与用Dimension RXL-MAX自动化分析仪的测定结果相符。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号