首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of ultra-thin metal deposits of copper on Pt(111) and polycrystalline platinum electrodes, as well as the adsorption of bisulfate on the copper-covered platinum surfaces, were studied by cyclic voltammetry and radioactive labeling. The highest charge obtained by voltammetry in the underpotential stripping range nearly corresponds to a close-packed monolayer of copper. The radioactive labeling data indicate that there are inactive and active copper adlayers toward bisulfate adsorption. The transition from inactive to active behavior is interpreted in terms of an increase in surface—bisulfate interactions at the expense of surface—perchlorate interactions. Based on recent X-ray absorption near-edge spectroscopy (XANES) analysis of copper deposition onto platinum, the site for bisulfate adsorption is most probably a Cu+ surface species. Combining this spectroscopic information with coulometry shows that an additional electron is confined to surface platinum atom(s) covered by the copper species. The copper film attains bulk copper properties when approximately 2.5 monolayers of copper are deposited.  相似文献   

2.
The kinetics of a $A_1+A_2\rightarrow A_1A_2$ reaction on supported catalysts is investigated numerically using a phenomenological model which includes: the bulk diffusion of reactants from a bounded vessel towards the adsorbent and the product bulk one into the same vessel, adsorption and desorption of reactants molecules, and surface diffusion of adsorbed particles. The model is based on the Langmuir–Hinshelwood surface reaction mechanism coupled with the Eley–Rideal step. The model based only on the Langmuir–Hinshelwood mechanism is also studied. Simulations were performed using the finite difference technique. Three cases of reactants adsorption are considered: each reactant can adsorb on the active in reaction catalyst surface and inactive support, one of reactants adsorbs on the catalyst surface while the other one adsorbs on the support, both reactants adsorb only on the support. The surface diffusion and catalytic surface size influence on the catalytic reactivity of a supported catalyst is studied.  相似文献   

3.
近年发展起来的新的动态技术能够用于分离测定非均相催化反应的吸附平衡,吸附和表面反应速率系数,而中毒实验使人们能够测定催化剂表面上活性位的容量和强度性质。如果把两者结合起来(可称作动态中毒法)就有可能研究催化剂表面上活性位性质与其动力学参数间的关系。本文的目的,是要在作者早先工作的基础上,在三相浆态床反应器中,应用动态中毒法探索研究Pd/Al_2O_3催化剂表面上活性位性质及其与α-甲基苯乙烯  相似文献   

4.
Fast scan voltammetry is an efficient tool to distinguish oxidative/reductive adsorp-tion/desorption from that for bulk reaction. In this work, we provide a methodology that the isotherm of oxidative/reductive adsorption desorption processes at electrode surface canbe obtained using just one solution with relatively low reactant concentration, by taking the advantage of varying the potential scan rate (relative of the diffusion rate) to tune the adsorption rate and proper mathematic treatment. The methodology is demonstrated bytaking acetate adsorption at Pt(111) in acidic solution as an example. The possibility for ex-tension of this method toward mechanistic studies of complicated electrocatalytic reactions is also given.  相似文献   

5.
钨基加氢脱氮催化剂载体与活性前身物的作用   总被引:1,自引:0,他引:1  
为研究载体表面化学性质和钨前物结构对钨基加氢脱氮催化剂活性的影响,以IR,XRD,程序升温硫化方法,研究了十二磷钨酸和偏钨酸铵两种不同结构的前身物在Al2O3的活性表面的分散状态。  相似文献   

6.
对于O_2和CO表面催化反应,建立了一个新的不可逆Monte Carlo模拟模型。在 二维格子中,引进了表面活性位和非活性位的要领。模型假设,一定浓度的活性位 随机分布在非活性位上,形成了活性位分布的二维格子模型反应器,并在ZGB模型 的基础上,考虑了氧原子和CO分子的表面扩散,特别是引进了吸附粒子的定向表面 扩散。其中,活性位和活性位最近邻是表面吸附物质反应的活性中心,而非活性位 的作用是通过表面扩散传质。当活性位浓度C_a = 1且考虑扩散时,模型还原为增 加了扩散的ZGB模型。当活性位浓度C_a = 1且只考虑氧的扩散时,模拟结果表明, 扩散几率达到某一数值(0.3)时,二级相变点完全消失。当活性位浓度C_a逐渐减 小时,单位活性位产生的CO_2的速率不断增大,这表明活性位的利用率提高了。  相似文献   

7.
The oxidation of benzaldehyde as a film on a solid surface by various substituted oxochromium(V) salen in solution has been studied by monitoring the change in contact angle of the oxidant at the film/liquid interface utilizing a Teflon cell of known hydrodynamics and controlled convection/diffusion. The kinetics of the redox reaction in bulk has been monitored by measuring the change in absorbance of the oxidant solution. The interfacial study permits analysis of adsorption of the oxidant followed by the oxidation of the substrate under pseudo-first-order conditions. A comparison of the independent surface-averaged kinetic data with those obtained in the solution phase oxidation reaction is made and a model is presented for the mechanism of the interfacial reaction. The kinetic investigation shows that the rate of oxidation is accelerated in the presence of an electron-withdrawing group and is faster at the solid/liquid interface compared to the bulk. The probable mechanism of the redox reaction is discussed.  相似文献   

8.
Phosphate adsorption mechanism by a homogenous porous layer of nano-sized magnetite particles immobilized onto granular activated carbon (nFe-GAC) was studied for both interface and bulk structures. X-ray Photoelectron Spectroscopy (XPS) analysis revealed phosphate bonding to the nFe-GAC predominantly through bidentate surface complexes. It was established that phosphate was adsorbed to the magnetite surface mainly via ligand exchange mechanism. Initially, phosphate was adsorbed by the active sites on the magnetite surface, after which it diffused into the interior of the nano-magnetite layer, as indicated by intraparticle diffusion model. This diffusion process continues regardless of interface interactions, revealing some of the outer magnetite binding sites for further phosphate uptake. Desorption, using NaOH solution, was found to be predominantly a surface reaction, at which hydroxyl ions replace the adsorbed phosphate ions only at the surface outer biding sites. Five successive fix-bed adsorption/regeneration cycles were successfully applied, without significant reduction in the nFe-GAC adsorption capacity and at high regeneration efficiency.  相似文献   

9.
The direct hydrolysis of crystalline cellulose to glucose in water without prior pretreatment enables the transformation of biomass into fuels and chemicals. To understand which features of a solid catalyst are most important for this transformation, the nanoporous carbon material MSC‐30 was post‐synthetically functionalized by oxidation. The most active catalyst depolymerized crystalline cellulose without prior pretreatment in water, providing glucose in an unprecedented 70 % yield. In comparison, virtually no reaction was observed with MSC‐30, even when the reaction was conducted in aqueous solution at pH 2. As no direct correlations between the activity of this solid–solid reaction and internal‐site characteristics, such as the β‐glu adsorption capacity and the rate of catalytic hydrolysis of adsorbed β‐glu strands, were observed, contacts of the external surface with the cellulose crystal are thought to be key for the overall efficiency.  相似文献   

10.
Fe2O3在ZrO2上的分散状态及其对催化性能的影响   总被引:2,自引:0,他引:2  
用多种物理化学手段, 对用不同方法制备的在ZrO_2上分散的氧化铁体系进行了细致的表征和比较. 对氧化铁在ZrO_2上分散的结构状态及其对催化性能的影响有了较为全面的了解.  相似文献   

11.
We have studied the mobility of active and inactive Thermomyces lanuginosus lipase (TLL) on a spin-coated trimyristin substrate surface using fluorescence recovery after photobleaching (FRAP) in a confocal microscopy setup. By photobleaching a circular spot of fluorescently labeled TLL adsorbed on a smooth trimyristin surface, both the diffusion coefficient D and the mobile fraction f could be quantified. FRAP was performed on surfaces with different surface density of lipase and as a function of time after adsorption. The data showed that the mobility of TLL was significantly higher on the trimyristin substrate surfaces compared to our previous studies on hydrophobic model surfaces. For both lipase variants, the diffusion decreased to similar rates at high relative surface density of lipase, suggesting that crowding effects are dominant with higher adsorbed amount of lipase. However, the diffusion coefficient at extrapolated infinite surface dilution, D0, was higher for the active TLL compared to the inactive (D0 = 17.9 x 10(-11) cm2/s vs D0 = 4.1 x 10(-11) cm2/s, data for the first time interval after adsorption). Moreover, the diffusion decreased with time after adsorption, most evident for the active TLL. We explain the results by product inhibition, i.e., that the accumulation of negatively charged fatty acid products decreased the diffusion rate of active lipases with time. This was supported by sequential adsorption experiments, where the adsorbed amount under flow conditions was studied as a function of time after adsorption. A second injection of lipase led to a significantly lower increase in adsorbed amount when the trimyristin surface was pretreated with active TLL compared to pretreatment of inactive TLL.  相似文献   

12.
The roles of surface and bulk for electrocatalysis have been investigated. Bi ad-atoms enhance a platinum electrode to a great extent for HCOOH oxidation. In order to examine whether bulk platinum atoms are necessary for the electrocatalysis, monolayer or submonolayer amounts of platinum atoms were made to deposit on a gold electrode which is quite inactive for the oxidation. The deposition of a complete monolayer of platinum atoms on a gold electrode makes the electrode as active as a platinum electrode itself. Bi ad-atoms enhance this electrode to the same extent as they do a platinum electrode for the oxidation. Thus surface atoms, Pt and Bi atoms, having no bulk atoms on a quite inactive electrode work effectively for the electrocatalysis, the platinum atoms for the adsorption of the main reactant and the Bi atoms for blocking of the sites against the formation of poison. It is the adsorptive property of the surface that controls the electrocatalytic activity.  相似文献   

13.
Enzymes have substrate‐tailored active sites with optimized molecular recognition and catalytic features. Although many different platforms have been used by chemists to construct enzyme mimics, it is challenging to tune the structure of their active sites systematically. By molecularly imprinting template molecules within doubly cross‐linked micelles, we created protein‐sized nanoparticles with catalytically functionalized binding sites. These enzyme mimics accelerated the hydrolysis of activated esters thousands of times over the background reaction, whereas the analogous catalytic group (a nucleophilic pyridyl derivative) was completely inactive in bulk solution under the same conditions. The template molecules directly controlled the size and shape of the active site and modulated the resulting catalyst's performance at different pHs. The synthetic catalysts displayed Michaelis–Menten enzymatic behavior and, interestingly, reversed the intrinsic reactivity of the activated esters during the hydrolysis.  相似文献   

14.
The decomposition of ethene on the Pd(111) surface was studied at effective pressures in the 10(-8) to 10(-7) mbar range and at sample temperatures between 300 and 700 K, using an effusive capillary array beam doser for directional adsorption, LEED, AES, temperature programmed reaction, and TDS. In the temperature range of 350-440 K increasingly stronger dehydrogenation of the ethene molecule is observed. Whereas at 350 K an ethylidyne adlayer is still present after adsorption, already at temperatures around 440 K complete coverage of the surface by carbon is attained, while the bulk still retains the properties of pure Pd. Beyond 440 K a steady-state surface C coverage is established, which decreases with temperature and is determined by detailed balancing between the ethene gas-phase adsorption rate and the migration rate of carbon into the Pd bulk. This process gives rise to the formation of a "partially carbon-covered Pd(x)C(y) surface". Above 540 K the surface-bulk diffusion of adsorbed carbon becomes fast, and in the UHV experiment the ethene adsorption rate becomes limited by the ethene gas-phase supply. The carbon bulk migration rate and the steady-state carbon surface coverage were determined as a function of the sample temperature and the ethene flux. An activation energy of 107 kJ mol(-1) for the process of C diffusion from surface adsorption sites into the subsurface region was derived in the temperature range of 400-650 K by modeling the C surface coverage as a function of temperature on the basis of steady-state reaction kinetics, assuming a first-order process for C surface-subsurface diffusion and a second-order process for C(ads) formation by dissociative C2H4 adsorption.  相似文献   

15.
IR spectroscopy is a technique particularly adapted for understanding the mechanism of catalytic reactions, being able to probe the surface mechanisms at the molecular level. In this critical review the main advances in the field are presented, both under the aspects of the in situ and operando approaches. A broad view of the most authoritative literature of the domain is given, based largely on the experience built up at the LCS laboratory in the last decades. After having presented the general methodology to observe a potential active site directly or by probe molecule adsorption, several examples illustrate the qualitative and quantitative analysis of the physical-chemical properties of the surface entities. The last part of the review is dedicated to the discrimination of the role of the active site and its links with the catalytic steps; the hot problem of the reaction intermediates and their visibility via spectroscopic techniques is critically addressed (138 references).  相似文献   

16.
用二元方格网络表示Cu(111)单晶表面上吸附活性位构型,建立了一个水-气转移反应的蒙特卡罗模型;对水-气转移反应的动力学进行了模拟,并研究了可逆吸附在表面反应中的重要作用.当水的解离吸附为反应的决速步骤时,模拟得到的CO和H2O的反应级数与Campbel等的单晶实验结果一致.模拟研究还表明,可逆吸附不仅可以抑制催化剂表面同种吸附物种cluster的形成,而且可以不断提供新的吸附活性位,从而使表面反应稳定进行得以维持.  相似文献   

17.
The features of the initial adsorption kinetics monitored at short adsorption times are investigated. It is shown that the concave character of the square-root dependence on time may be due to a combined effect of the rate of surface reaction and that of the transport from the bulk to the surface. That effect causes the appearance of a certain subsurface region close to the surface, where the concentration of the sorbate is different from that in the bulk phase. For the purpose of illustration, the initial parts of the kinetic isotherms are analyzed for the RY/F-400 system already studied in our previous paper.  相似文献   

18.
Viscoelastic behavior of a solution boundary layer at a solid-liquid interface could differ from that of bulk solution due to molecular adsorption at the interface. Such a property can be used as a characteristic signature to indicate the molecular adsorption at the interface. In this work, we systematically measured the viscoelastic properties of polyethylene glycol (PEG) solution boundary layers in contact with a gold surface using a quartz crystal resonator technique. The results show that viscosity and shear modulus of the PEG boundary layer increase with the PEG concentration in the solution; the increasing rate depends on the molecular weight. For relatively small PEG molecules, the viscoelastic property of the PEG solution boundary layer is almost indistinguishable from that of the bulk solution of the same concentration, indicating no adsorption at the interface. For larger PEG polymers (with molecular weights above a few thousands grams per mole), the viscoelastic property of the solution boundary layer differs distinctively from that of the corresponding bulk solution. The difference can be attributed to physisorption of PEG molecules on the Au surface, which alters the viscoelastic behaviors of the boundary layer. The results suggest that adsorption behaviors of macromolecules at a solid-liquid interface might be inferred from the changes of the viscoelastic properties of a solution boundary layer.  相似文献   

19.
The irreversible adsorption of telechelic polymer chains from solution and melts onto solid substrates has been studied using the bond fluctuation Monte Carlo model. Complex brush formation kinetics dominated by diffusion of chains to the substrate at short times (diffusion-limited regime or DLR) and by penetration of chains through the maturing brush at longer times (penetration-limited regime or PLR) were observed. During the entire adsorption process, the rate of chain adsorption decreases monotonically with time. In the DLR, characterized by a maximum in the concentration of singly bound chains and a rapidly increasing fraction of doubly bound chains (loops), this decrease is due primarily to the depletion of free chains near the substrate and the formation of concentration gradients of free (nonadsorbed) chains in the bulk solution. The DLR and PLR are separated by an intermediate regime during which the brush becomes dominated by doubly bound chains and both penetration of the maturing brush and diffusion of chains to the brush surface play a role in determining the kinetics of brush growth. The PLR is characterized by steep gradients of free chains within the growing brush and the disappearance of concentration gradients for free chains in the bulk solution. In the PLR, the concentration of singly bound chains is low and decreases slowly while surface coverage and the fraction of doubly bound chains increase slowly. The rates of adsorption of new chains and the formation of loops in the PLR slow dramatically with increasing surface coverage and increasing chain length and less dramatically with decreasing bulk concentration.  相似文献   

20.
ABSTRACT: In this paper, the surface stoichiometry, acid-base properties as well as the adsorption of xanthate at ZnS surfaces were studied by means of potentiometric titration, adsorption and solution speciation modeling. The surface proton binding site was determined by using Gran plot to evaluate the potentiometric titration data. Testing results implied that for stoichiometric surfaces of zinc sulfide, the proton and hydroxide determine the surface charge. For the nonstoichiometric surfaces, the surface charge is controlled by proton, hydroxide, zinc and sulfide ions depending on specific conditions. The xanthate adsorption decreases with increasing solution pH, which indicates an ion exchange reaction at the surfaces. Based on experimental results, the surface protonation, deprotonation, stoichiometry and xanthate adsorption mechanism were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号