首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
用MonteCarlo方法研究了非均相催化剂表面吸附态氢原子的迁移对催化反应活性的影响,模拟结果表明,吸附态氢原子扩散很慢时,表面活性位很快被氢原子饱和,转换频率TOF增大到一定程度时很快下降;而当表面吸附态氢原子的扩散速率达到足够大的程度时,TOF将不再受氢原子扩散的影响.  相似文献   

2.
用二元方格网络表示Cu(111)单晶表面上吸附活性位构型,建立了一个水-气转移反应的蒙特卡罗模型;对水-气转移反应的动力学进行了模拟,并研究了可逆吸附在表面反应中的重要作用.当水的解离吸附为反应的决速步骤时,模拟得到的CO和H2O的反应级数与Campbel等的单晶实验结果一致.模拟研究还表明,可逆吸附不仅可以抑制催化剂表面同种吸附物种cluster的形成,而且可以不断提供新的吸附活性位,从而使表面反应稳定进行得以维持.  相似文献   

3.
利用MonteCarlo(MC)方法研究了吸附态物种表面迁移对程序升温脱附谱图的影响。在MC模型中,催化型表面用一个二维的二方格网张表示,网络格点表示吸附活性位。  相似文献   

4.
采用偏压受限扩散聚集模型研究溶液中银树形纳米结构的生长。模拟中,在二维正方形格子中引入了等腰直角三角形粒子进行模拟,同时运用不同的粘贴概率来描述表面活性剂的效果。模拟结果表明树形纳米结构随着偏压的增大而变得更密。表面活性剂的加入使得树形纳米结构变得更加对称和规则。更进一步,当表面活性剂的效果足够强且外加偏压很小的时候,银纳米颗粒聚集成了银纳米片。模拟结果有利于定性解释相关的实验结果。  相似文献   

5.
吸附质在球形颗粒的内扩散可用固相内扩散偏微分方程描述,当使用吸附剂球心的浓度为零时,可得到解析解模型;当使用在球心的浓度梯度为零时,只能得到数值解。本文分析了在这两种不同的边界条件下导出的分析解和数值解模型之间的差别,当分别用两种模型计算颗粒内瞬时溶质浓度分布和吸附剂颗粒体积平均吸附量的结果表明:在吸附发生的初期(如τ=0.0001),二者的相对误差为24%,当吸附持续较长时间时,二者的数值基本相  相似文献   

6.
采用程序升温催化反应技术、程序升温吸脱附技术、原位红外光谱技术研究了Pd、Pt组分及CO对Pd(Pt)/Al_2O_3催化剂氢氧反应活性的影响.结果表明,原料气中无CO存在时,单铂催化剂对氢氧反应的活性高于Pd-Pt双金属催化剂,有CO存在时,Pd-Pt催化剂反而优于单铂催化剂;CO使Pd-(Pt)/Al_2O_3催化剂活性降低的主原因是由于CO与H_2之间的竞争吸附,CO占据了H_2吸附的部分活性位,以及催化剂表面上被吸附的CO与O_2和被吸附的H_2与O_2之间的竞争反应所致;当氧含量低于化学计量时,CO歧化反应所导致的积炭在单铂催化剂表面上比在Pd-Pt催化剂上严重.  相似文献   

7.
Monte Carlo法模拟CO在Fe(100)表面的升温脱附   总被引:2,自引:0,他引:2  
以类桥位的模型为基础,采用MonteCarlo算法,结合键级守恒-Morse势方法(BOC-MP),模拟了CO在Fe(100)表面上平躺式吸附,考虑了金属与吸附质(M-A)、吸附质与吸附质(A-A)之间的相互作用,以研究小分子在金属表面上的TPD谱图,分析了CO的解离过程和脱附过程对TPD谱图的影响,结果表明,理论模拟与实验相符.  相似文献   

8.
董虹志 《分子催化》2012,26(6):554-559
通过密度泛函理论的第一性原理,模拟了CO2分子在SrTiO3(100)表面TiO2-和SrO-位点上的吸附行为,获得了CO2在几种不同吸附模型下的结构参数及表面吸附能,进而研究了吸附机理和结构稳定性.计算结果表明,当CO2的C原子吸附在SrTiO3(100)表面SrO-及TiO2-位点的氧原子上时,吸附结构较稳定,尤其是C、O原子共吸附在TiO2-位点时最稳定,而其余吸附模型则不稳定.对吸附稳定模型的Mulliken布局数及态密度分析显示:CO2分子在SrTiO3(100)表面吸附主要是由于SrTiO3(100)面的电子跃迁至CO2分子,CO2分子得到电子形成弯曲的CO2-阴离子结构,并伴随着C-O键的伸长,从而达到吸附活化CO2的目的.  相似文献   

9.
用程序升温表面反应(TPSR)和程序升温还原(TPR)以及过渡应答(TR)等动态手段研究Ni/Al_2O_3催化剂表面上CO氢化反应的活性位状况。结果表明, 催化剂表面存在两种类型的活性位。其中A位来自表面上的聚晶体Ni, B位来自Ni与载体Al_2O_3强相互作用形成的Ni-Al化合物。实验结果还表明, CO在两个活性位都有吸附, 但在有H_2参与的条件下, 会影响二个活性位上的CO吸附量。  相似文献   

10.
采用电荷自洽方法,以嵌入原子簇Zn4O4为模型,使用量子化学的密度泛函理论,研究了二氧化碳在六方ZnO非极化的(101^-0)面的可能吸附态。计算表明,CO2垂直底物表面吸附,氧原子只能与Zn原子配位,并且吸附能为很弱的1.8kJ/mol;吸附质分子平行于底物表面时,得到了5种平衡吸附构型,其中采用C-Zn配位和η^2-O,O二齿配位时,吸附很弱,经BSSE校正后的吸附能在8.8~6.6kJ/mol。采用η^2-C,O方式分别与O和Zn配位时,吸附能为31.1kJ/mol;C原子与表面O配位时计算得到了唯一的一个化学吸附态,吸附能为139.6kJ/mol,与实验结果一致。  相似文献   

11.
A number of experimental studies have shown recently that ppm-level additions of nitric oxide (NO) enhance the rate of nitrous oxide (N(2)O) decomposition catalyzed by Fe-ZSM-5 at low temperatures. In the present work, the NO-assisted N(2)O decomposition over mononuclear iron sites in Fe-ZSM-5 was studied on a molecular level using density functional theory (DFT) and transition-state theory. A reaction network consisting of over 100 elementary reactions was considered. The structure and energies of potential-energy minima were determined for all stable species, as were the structures and energies of all transition states. Reactions involving changes in spin potential-energy surfaces were also taken into account. In the absence of NO and at temperatures below 690 K, most active single iron sites (Z(-)[FeO](+)) are poisoned by small concentrations of water in the gas phase; however, in the presence of NO, these poisoned sites are converted into a novel active iron center (Z(-)[FeOH](+)). These latter sites are capable of promoting the dissociation of N(2)O into a surface oxygen atom and gas-phase N(2). The surface oxygen atom is removed by reaction with NO or nitrogen dioxide (NO(2)). N(2)O dissociation is the rate-limiting step in the reaction mechanism. At higher temperatures, water desorbs from inactive iron sites and the reaction mechanism for N(2)O decomposition becomes independent of NO, reverting to the reaction mechanism previously reported by Heyden et al. [J. Phys. Chem. B 2005, 109, 1857].  相似文献   

12.
In this paper, we present computer simulation results concerning interdiffusion of fully compatible components in symmetric binary (AB) polymer mixtures in solutions. The simulation is performed in two dimensions using the algorithm based on the dynamic lattice liquid model. The solvent molecules are taken into account explicitly. The evolution of the concentration profiles in time at an interface is studied for chain lengths N=2,4,8,16 for three polymer concentrations phi=0.1,0.5,0.9. The tracer diffusion coefficients for polymer chains and for the solvent are obtained by monitoring the mean square displacements of their center of mass. The relationships between coefficients of interdiffusion and self-diffusion are tested.  相似文献   

13.
The problem of modeling the rate of a two-particle ionization reaction occurring at an active surface site is considered. The reagent are presumably transported into the reaction zone through adsorption of particles from the bulk solution at the inactive part of the surface and subsequent transport to the active site by lateral diffusion. The reaction rate, concentration distribution in the bulk solution, and the coverage of the inactive surface part by adsorption products are calculated.  相似文献   

14.
对甲烷氧化偶联反应活性较高的多元复合氧化物催化剂(Li-Ti-La,Li-Mn-La,Li-Ni-La)的稳定性和失活机理进行了初步探讨,利用XRD,IR,XPS和O2-TPD等方面对催化剂进行了表征,结果表明,催化剂在高温及反应气氛的作用下,表面锂的流失,使体相晶格中的锂向表面扩散,导致含锂活性相结构的分解(或部分分解),从而减少了体相相氧空位和生氧种的数量,降低了晶格氧的活动性,致使催化剂活必  相似文献   

15.
潘勇  朱崇业  李全芝 《化学学报》1994,52(4):313-319
在不同条件下制备了一系列La~2O~3样品,以CH~4与CD~4间的氢原子交换反应作为测试反应来测量La~2O~3对CH~4分子中C-H键的断键能力.采用NH~3-TPD,CO~2-TPD和NH~3,CO~2对催化剂的中毒反应来研究La~2O~3表面的酸中心和活性中心.La~2O~3的表面组成用XPS测量.实验发现尽管酸中心在活性中心只占较小的部分. 但它与碱中心一样对于CH~4分子的C-H断键是必不可少的.本文提出, 组成活性中心的酸中心各碱中心很可能分别是一部分具有较强酸性的晶格La^3^+和具有较强碱性的晶格O^2^-,而La~2O~3晶体中晶格缺陷的形成能使更多的晶格离子成为活性中心.  相似文献   

16.
The deactivation of highly active multicomponent oxide Li-La-Me(Me=Ti,Mn,Ni)catalyst at high reaction temperature has been studiedThe surface and bulk structure of the catlysts were characlerized by meansof XRD.IR.XPS.BET.O_2-TPD.etc The results show that the deactivationof the catalyst at high reaction temperature is mainly due to the loss ofsurface lithium As a result the ditfusion of lithium from bulk to surfaceleads to the decomposition of the active phase containing lithium whichlowers the number of oxygen yaeanctes and decreases the mobility of latticeoxygen.  相似文献   

17.
用MonteCarlo法研究了脱附和E-R机理对不可逆催化氧化反应A+1/2B2→AB的相交和自振荡的影响、结果表明,(1)催化剂表面A的脱附使ZGB模型中的一级相变点消失,但对二级相交点的影响很小;当有E-R机理参与时,二级相交点消失,且E-R过程的几率对一级相交点的影响较大;当A的脱附和E-R过程同时起作用时,上述反应不存在相交(2)在ZGB模型中的二级相变点附近,反应速率随时间的变化具有明显的振荡现象,在其它位置主要表现为噪音。引入A的脱附后在二级相交点附近明显的自振荡现象依然存在;当E-R过程起作用时,随着二级相交点的消失,明显的振荡现象亦随之消失.(3)A的脱附和E-R过程对上述反应相变的影响与A的表面扩散对相变的影响有着本质的区别,因为后者只能改变相变点的位置而不能改变相变点的存在状况.  相似文献   

18.
The role of monomer diffusion in the polymerization of propylene by organometallic catalysis was examined by use of mathematical models which couple the rate of diffusion through the polymer film surrounding the catalyst with the rate of surface reaction. An approximate form of a second-order, integrated rate equation was used to describe the disappearance of active sites on the surface. For the most conservative model conceivable, it was estimated that the particle size would have to be 10–100 times the size for the catalysts presently in use before diffusion time would be significant. The size of the catalysts was determined by photomicrographs and nitrogen adsorption surface areas. The surface areas for three different catalysts were 7, 20–21 and 35 m.2/g., respectively. The kinetic model without the diffusion term was used satisfactorily to correlate productivity data. The characteristic decline in reaction rate was examined in terms of the decay of active sites on the surface of the catalyst. The rate of decay was determined to be second order with respect to the site concentration. The kinetic model indicates that the total polymerization time for a specified productivity is the sum of the monomer diffusion time and the surface reaction time. The model derived by use of an approximate second-order decay function is unique because of the additivity of diffusion and reaction times, which is not the case when the second-order function is used rigorously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号