首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
任杰  王炳武  陈志达 《中国科学B辑》2009,39(11):1501-1508
应用密度泛函理论结合对称性破损方法(DFT-BS)研究了Y^III-,Gd^III-氮氧自由基配合物,Ln(hfac)3(NITPhOCH3)2(Ln=Y^III1,Gd^III2,hafc=hexafluoroacetylacetonate)(NITPhOCH3=4'-methoxyo—phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide).这两个配合物的中心离子分别是抗磁性的Y^III和顺磁性的Gd^III.它们各自被两个氮氧自由基配位,形成一个两自旋中心和一个三自旋中心的磁性分子体系.分子磁轨道分析显示,在这两个配合物的氮氧自由基之间的反铁磁耦合作用中,Y^III和Gd^III离子空的4d/5d轨道扮演了磁耦合的传递作用.对于Gd^III和自由基配体之间的铁磁耦合作用,通过半充满的4厂壳层和自由基的NO(π^*)局域磁轨道的重叠积分计算显示,它们之间的轨道重叠非常小.磁轨道分析和自旋布居分析也显示Gd^III收缩的4广轨道和NO(π^*)局域磁轨道都相当定域,所以我们认为这种铁磁性耦合主要是由于Gd^III的4f^7轨道与NO(π^*)局域磁轨道近乎完全定域的结果.  相似文献   

2.
氧负离子与乙烯自由基反应的理论研究   总被引:1,自引:0,他引:1  
王新磊  于锋  谢丹  刘世林  周晓国 《化学学报》2008,66(22):2499-2506
在G3MP2B3理论水平下研究了氧负离子与乙烯自由基的反应机理. 反应入口势能面的刚性扫描显示: 对于不同的初始反应取向, 体系存在3种不同的反应机理, 分别对应直接脱水、插入反应和直接键合成中间体通道. 其中, 通过插入反应形成的富能中间体[CH2=C—OH]-及键合中间体[CH2=CHO]-都可以进一步经异构化和解离生成其它各种可能产物, 如C2H-+H2O, OH-+CH2C和 +CO产物通道. 基于计算得到的反应势垒的相对高度, 直接脱水反应显然是该反应体系最主要的产物通道, 同时我们还结合Mulliken电荷布居分析研究了其中涉及的电子交换过程. 由此, 计算结果证实了以往OH-与C2H2反应的实验研究结果. 此外, 还对比了该反应体系、氧原子与乙烯自由基、氧负离子与乙烯分子三个反应的不同机理.  相似文献   

3.
许家喜 《大学化学》2013,28(3):77-81
通过比较芳香亲电取代与芳基重氮盐的水解反应和芳香亲核取代与芳基金属有机试剂参与的反应中芳香部分结构的差别来说明芳基正离子与环己二烯正离子以及芳基负离子与环己二烯负离子的区别。讨论了芳香自由基偶联中的芳基自由基及其对芳香环的自由基加成中的环己二烯自由基的差别。还讨论了芳基离子和自由基结构与芳香性的关系。反应中涉及芳烃芳香环碳原子的sp2杂化轨道形成的σ键断裂时,苯环的6电子大π键不被破坏,根据电子转移的情况,可以形成芳基正离子、芳基负离子或芳基自由基。而亲电试剂、亲核试剂或自由基对芳烃的苯环π键发生的加成反应,都会破坏苯环的6电子大π键,使其失去芳香性,相应地形成环己二烯正离子、环己二烯负离子和环己二烯自由基中间体。  相似文献   

4.
辛景凡  王文亮  王渭娜  张越  吕剑 《化学学报》2009,67(17):1987-1994
在B3LYP/6-311++G(2df,p)水平上优化了标题反应驻点物种的几何构型, 并在相同水平上通过频率计算和内禀反应坐标(IRC)分析对过渡态结构及连接性进行了验证. 采用双水平计算方法HL//B3LYP/6-311++G(2df,p)对所有驻点及部分选择点进行了单点能校正, 构建了CH2SH+NO2反应体系的单重态反应势能剖面. 研究结果表明, CH2SH与NO2反应体系存在4条主要反应通道, 两个自由基中的C与N首先进行单重态耦合, 形成稳定的中间体HSCH2NO2 (a). 中间体a经过C—N键断裂和H(1)—O(2)形成过程生成主要产物P1 (CH2S+trans-HONO), 此过程需克服124.1 kJ•mol-1的能垒. 中间体a也可以经过C—N键断裂及C—O键形成转化为中间体HSCH2ONO (b), 此过程的能垒高达238.34 kJ•mol-1. b再经过一系列的重排异构转化得到产物P2 (CH2S+cis-HONO), P3 (CH2S+HNO2)和P4 (SCH2OH+NO). 所有通道均为放热反应, 反应能分别为-150.37, -148.53, -114.42和-131.56 kJ•mol-1. 标题反应主通道R→a→TSa/P1→P1的表观活化能为-91.82 kJ•mol-1, 此通道在200~3000 K温度区间内表观反应速率常数三参数表达式为kCVT/SCT=8.3×10-40T4.4 exp(12789.3/T) cm3•molecule-1•s-1.  相似文献   

5.
在CCSD(T)/6-311G(d,p)//MP2/6-311G(d,p)+ZPE水平上对反应HCCO+NO2进行了计算, 建立了反应势能面. 此反应由反应物通过三步反应到达产物. 首先, NO2的O原子进攻HCCO自由基中与H相邻的C原子, 形成异构体1[ONOC(H)CO]或2[H(CONOC)O]. 然后, 异构体1和2通过N-O键的断裂形成产物NO和OC(H)CO. 最后, 产物中的OC(H)CO可以通过C-C键的断裂进一步分解为HCO和CO. 由HCCO+NO2反应得到产物NO+HCO+CO.  相似文献   

6.
在B3LYP/6-311++G(2df,p)水平上优化了标题反应驻点物种的几何构型, 并在相同水平上通过频率计算和内禀反应坐标(IRC)分析对过渡态结构及连接性进行了验证. 采用双水平计算方法HL//B3LYP/6-311++G(2df,p)对所有驻点及部分选择点进行了单点能校正, 构建了CH2SH+NO2反应体系的单重态反应势能剖面. 研究结果表明, CH2SH与NO2反应体系存在4条主要反应通道, 两个自由基中的C与N首先进行单重态耦合, 形成稳定的中间体HSCH2NO2 (a). 中间体a经过C—N键断裂和H(1)—O(2)形成过程生成主要产物P1 (CH2S+trans-HONO), 此过程需克服124.1 kJ•mol-1的能垒. 中间体a也可以经过C—N键断裂及C—O键形成转化为中间体HSCH2ONO (b), 此过程的能垒高达238.34 kJ•mol-1. b再经过一系列的重排异构转化得到产物P2 (CH2S+cis-HONO), P3 (CH2S+HNO2)和P4 (SCH2OH+NO). 所有通道均为放热反应, 反应能分别为-150.37, -148.53, -114.42和-131.56 kJ•mol-1. 标题反应主通道R→a→TSa/P1→P1的表观活化能为-91.82 kJ•mol-1, 此通道在200~3000 K温度区间内表观反应速率常数三参数表达式为kCVT/SCT=8.3×10-40T4.4 exp(12789.3/T) cm3•molecule-1•s-1.  相似文献   

7.
通过PM3方法研究氯自由基与吡啶分子加成反应的结果表明,生成不同产物2-氯吡啶、3-氯吡啶、4-氯吡啶的每一个反应通道存在两个过渡态,生成2-氯吡啶反应路径主过渡态的能量及活化能量低,分别为-110293.6和139.2kJ/mol。反应优生成2-氯吡啶,与实验结果一致,生成2-氯吡啶反应过程(IRC)相关的键长,,键级和原子净电荷变化表明,吡啶环反应部位C原子与Cl加成形成C-Cl键主要与共轭双键断裂同步,而C-H键的断裂主要与共轭双键的重新形成同步,反应进程中氯原子净电荷从增加到减少的变化是氯原子诱导效应吸引电子和p-π共轭电荷平均分布等相互作用的结果。  相似文献   

8.
C2H3+NO2反应速率常数的研究   总被引:6,自引:0,他引:6  
利用激光光解C2H3Br产生C2H3自由基,在气相298 K, 总压2.66×103 Pa的条件下,研究C2H3与NO2的反应,用激光光解-激光诱导荧光(LP-LIF)检测中间产物OH自由基的相对浓度随着反应时间的变化关系,报导了双分子反应C2H3+NO2的速率常数k(C2H3+NO2)=(1.8±0.05)×10-11cm3•molec.-1•s-1,同时也得到OH+NO2反应的速率常数k(OH+NO2)=(2.1±0.15)×10-12 cm3•molec.-1•s-1.  相似文献   

9.
使用MP2/6-311G方法得到了四硫富瓦烯自由基正离子二聚体(TTF·^+ -TTF·^+)能量极小点的结构.这显示这种正离子间的吸引作用存在.这种新的吸引作用是望远镜形状的20中心2电子分子间共价π/π键.这种共价π/π键的键能约为-21kcal·mol^-1,它被正离子间的库伦排斥作用掩盖.有负离子围绕的四硫富瓦烯自由基正离子二聚体(TTF·^+ -TTF·^+)体系是稳定的.  相似文献   

10.
CH3+HNCO反应机理的理论研究   总被引:4,自引:0,他引:4  
在6-311++G**基组水平上,采用UMP2方法对自由基CH3与HNCO反应机理进行了研究,全参数优化了反应通道上各驻点的几何构型.结果表明, 自由基CH3与HNCO分子间反应有三条反应通道,第一为CH3与HNCO分子间经过生成一个稳定化能为4.56 kJ•mol-1的含氢键的分子复合物M后,经过渡态TS生成另一个产物复合物M′,然后分解为甲烷和NCO自由基;第二是CH3与HNCO分子间通过生成稳定反式中间体trans-int,其经过渡态trans-ts分解成产物CH3NH和CO;第三是CH3与HNCO分子间通过生成稳定顺式中间体cis-int,其经过渡态cis-ts分解成产物CH3NH和CO.比较三条反应通道的反应活化能,表明CH3与HNCO反应较易生成CH4+NCO.  相似文献   

11.
With the goal of reducing flame velocity in combustion reactions, this study focused on the conversion of hydrogen and hydroxyl radicals into relatively unreactive hydrogen and water molecules through the inter-conversion of formyl fluoride to fluoroformyl radicals. Hybrid DFT computational methods were employed to confirm these results. Based on this, the fluoroformyl radical-assisted transformation of the hydrogen and hydroxyl radicals into hydrogen and water molecules was discussed.  相似文献   

12.
Antioxidants scavenge reactive oxygen species and, therefore, are vitally important in the living cells. The antioxidant properties of eupatilin have recently been reported. In this article, the reactions of eupatilin with the hydroxyl radical (OH?) in solution are studied using density functional theory calculations and the polarizable continuum model. Three mechanisms are considered including: sequential electron proton transfer (SEPT), sequential proton loss electron transfer (SPLET), and hydrogen abstraction (HA). Three solvents with different polarities, that is, benzene, methanol, and water, are used to investigate the effect of the environment on the mechanisms. The relative Gibbs free energies and enthalpies corresponding to different mechanisms are calculated. Our results show that SEPT is thermodynamically favored in aqueous solution. Once the eupatilin anion is produced, the second step in SPLET mechanism is thermodynamically favored in methanol and water. The HA mechanism is thermodynamically favored in gas, benzene, methanol, and water. This mechanism is more energetically favorable to occur in a more polar solvent. The natural bond orbital charges and spin densities as well as the singly occupied molecular orbital are then analyzed. It is concluded that the HA process is governed by proton coupled electron transfer mechanism. The attack of the radical takes place preferentially at position 7 of eupatilin. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
二重态下反应HCCO(2A″)+O2(3∑-g)的势能面理论研究   总被引:1,自引:0,他引:1  
丁元庆  王超  方德彩  刘若庄 《化学学报》2004,62(15):1373-1378,FJ01
选用cc-p VDZ,cc-pVTZ基组用密度泛函方法(B3LYP)研究了基态羰游基自由基HCCO(2A″)与基态氧分子O2(3∑g^-)反应的机理,在B3LYP/cc-pVDZ优化的几何构型基础上,使用CCSD(T)/cc-pVDZ方法进行了单点能校正.此外,还采用基于B3LYP/6-31G^*几何构型及振动频率的G383理论对所有驻点进行了更精确的能量计算.结果表明,只需越过6.31kJ/mol或6.23kJ/mol的位垒,氧分子中的一个氧原子便很容易地与羰游基中紧邻氢原子的碳原子相结合得到两个总能较比反应物低88.11kJ/mol或84.85kJ/mol的开环中间体,此二开环中间体很容易发生C-C-O-C环合或C-O-O环合从而转化为更稳定的环式异构体(总能较比反应物低149.81kJ/mol和54.97kJ/mol),转化位垒分别为8.73kJ/mol和86.44kJ/mol,该二环式异构体均很容易分解为反应的最终产物H CO CO2,其它可能的通道也在本文中有所探讨。  相似文献   

14.
卞贺a 张士国  a  b 夏道宏a 《化学学报》2009,67(18):2053-2059
采用密度泛函理论的B3LYP方法, 在6-311++G(d,p)基组水平上研究了CH3S自由基与HO2自由基的微观反应机理, 全参数优化了反应势能面上各驻点的几何构型, 振动分析和内禀反应坐标(IRC)分析结果证实了中间体和过渡态的真实性, 计算所得的键鞍点电荷密度的变化情况也确认了反应过程. 找到了五条可能的反应通道, 对结果的分析表明: 单线态反应通道(5) CH3S+HO2→CH3SOOH (1P), 是所有通道中的主要反应通道. 该通道不需要克服过渡态能垒, 属于放热反应, 在动力学和热力学上都是最为有利的. 对于三线态反应通道来说, 通道(1)CH3S+HO2→COM11→TS1→COM12→CH3SH+O2 (3P)为主要反应通道, 控制步骤的活化能为53.5 kJ/mol, 能垒最低, 属于放热反应, 在动力学和热力学上都是有利的.  相似文献   

15.
Our previous study has revealed that para-substituents have opposite electronic effects on the C-S bond lengths of thiophenols and thiophenolic radicals. Although a theoretical elucidation has been given, it has not been supported by theoretically calculated atomic charges. To give an alternative explanation, we calculated the C-S bond lengths, C-S bond electron densities, and Mulliken charges on the carbon and sulfur atoms for thiophenols, thiophenolic radicals, and thiophenolic radical cations by means of the B3LYP density functional theory method using the 6-31G(d, p) basis set. It was revealed that the C-S bond length is adequately defined in terms of C-S bond electron density. The distinct electronic effects on the C-S bond lengths of thiophenols, thiophenolic radicals and thiophenolic radical cations are well elucidated by the different electronic states (electron-deficient or-rich) of the phenyl ring and SH group.  相似文献   

16.
卞贺  张士国  夏道宏 《化学学报》2009,67(18):2053-2059
采用密度泛函理论的B3LYP方法, 在6-311++G(d,p)基组水平上研究了CH3S自由基与HO2自由基的微观反应机理, 全参数优化了反应势能面上各驻点的几何构型, 振动分析和内禀反应坐标(IRC)分析结果证实了中间体和过渡态的真实性, 计算所得的键鞍点电荷密度的变化情况也确认了反应过程. 找到了五条可能的反应通道, 对结果的分析表明: 单线态反应通道(5) CH3S+HO2→CH3SOOH (1P), 是所有通道中的主要反应通道. 该通道不需要克服过渡态能垒, 属于放热反应, 在动力学和热力学上都是最为有利的. 对于三线态反应通道来说, 通道(1)CH3S+HO2→COM11→TS1→COM12→CH3SH+O2 (3P)为主要反应通道, 控制步骤的活化能为53.5 kJ/mol, 能垒最低, 属于放热反应, 在动力学和热力学上都是有利的.  相似文献   

17.
In surface‐initiated atom transfer radical polymerization, knowledge of grafting density is of significant interest because it is one of the determining properties of grafted polymer. It is well known that not all of the immobilized initiators can grow into polymer chains. However, little is known about why this happens and what affects the grafting efficiency. The lack of information is partly due to the difficulty in experimental determination of grafting density on flat substrates. To circumvent the problem, Monte Carlo simulation with bond fluctuation model is used in this study to investigate the effects of various reaction conditions on the grafting density. The simulation results show lower grafting density when less deactivator is present. In systems with lower deactivator concentration, the number of monomer added per activation cycle is higher. Coupling this with close proximity of immobilized initiators results in chains initiated at earlier time to shield their neighboring initiator moieties from adding mono­mers, thus lowering the grafting density in such a system. These simulation results also provide an explanation to the seemingly conflicting trend reported in the literatures.

  相似文献   


18.
In order to address problems such as aging, cell death, and cancer, it is important to understand the mechanisms behind reactions causing DNA damage. One specific reaction implicated in DNA oxidative damage is hydroxyl free-radical attack on adenine (A) and other nucleic acid bases. The adenine reaction has been studied experimentally, but there are few theoretical results. In the present study, adenine dehydrogenation at various sites, and the potential-energy surfaces for these reactions, are investigated theoretically. Four reactant complexes [A···OH]* have been found, with binding energies relative to A+OH* of 32.8, 11.4, 10.7, and 10.1 kcal mol(-1). These four reactant complexes lead to six transition states, which in turn lie +4.3, -5.4, (-3.7 and +0.8), and (-2.3 and +0.8) kcal mol(-1) below A+OH*, respectively. Thus the lowest lying [A···OH]* complex faces the highest local barrier to formation of the product (A-H)*+H(2)O. Between the transition states and the products lie six product complexes. Adopting the same order as the reactant complexes, the product complexes [(A-H)···H(2)O]* lie at -10.9, -22.4, (-24.2 and -18.7), and (-20.5 and -17.5) kcal mol(-1), respectively, again relative to separated A+OH*. All six A+OH* → (A-H)*+H(2)O pathways are exothermic, by -0.3, -14.7, (-17.4 and -7.8), and (-13.7 and -7.8) kcal mol(-1), respectively. The transition state for dehydrogenation at N(6) lies at the lowest energy (-5.4 kcal mol(-1) relative to A+OH*), and thus reaction is likely to occur at this site. This theoretical prediction dovetails with the observed high reactivity of OH radicals with the NH(2) group of aromatic amines. However, the high barrier (37.1 kcal mol(-1)) for reaction at the C(8) site makes C(8) dehydrogenation unlikely. This last result is consistent with experimental observation of the imidazole ring opening upon OH radical addition to C(8). In addition, TD-DFT computed electronic transitions of the N(6) product around 420 nm confirm that this is the most likely site for hydrogen abstraction by hydroxyl radical.  相似文献   

19.
The reaction mechanism of CH3O2 and HS was systematically investigated by density functional theory (DFT). Six singlet pathways and seven triplet ones are located on the potential surface (PES). The result indicates that the main products are CH3O and HSO both on the singlet and triplet PES, different from the CH3O2 + OH reaction. Moreover, deformation density (ρdef) and atoms in molecules (AIM) analyses were carried out to further uncover the nature of chemical bonding evolution in the primary pathways. Furthermore, reaction rate constants were calculated in the temperature range from 200 to 1000 K using the transition state theory with the Wigner and Eckart tunneling corrections. Our results can shed light on the title reaction and offer instructions for analogous atmospheric reactions, as well as experimental research in the future.  相似文献   

20.
A quantum chemical investigation on the reaction mechanism of CH3O2 with OH has been performed. Based on B3LYP and QCISD(T) calculations, seven possible singlet pathways and seven possible triplet pathways have been found. On the singlet potential energy surface (PES), the most favorable channel starts with a barrierless addition of O atom to CH3O2 leading to CH3OOOH and then the O? O bond dissociates to give out CH3O + HO2. On the triplet PES, the calculations indicate that the dominant products should be 3CH2O2 + H2O with an energy barrier of 29.95 kJ/mol. The results obtained in this work enrich the theoretical information of the title reaction and provide guidance for analogous atmospheric chemistry reactions. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号