首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
用硫脲分子表面修饰的CdS纳米粒子的合成和表征   总被引:15,自引:0,他引:15  
报道了用硫脲分子进行表面化学修饰的CdS纳米粒子的合成方法,并引入了AOT(磺基琥珀酸双-2-乙基己基酯钠盐)作为平衡反离子,进一步对CdS表面作了修饰,增加了CdS纳米粒子在有机溶剂中的稳定性和可分散性。我们还探讨了温度、浓度、pH等因素对合成的影响,并通过TEM、XRD、FT-IR等手段对产物结构进行了表征。所得微粒粒径为5 nm左右,呈球形,硫脲分子与CdS纳米粒子富Cd2+表面通过形成Cd-S配位键而修饰在粒子表面。这种表面修饰的CdS纳米粒子将在非线性光学及自组装方面具有优  相似文献   

2.
油酸修饰PbO纳米微粒的合成及结构表征   总被引:7,自引:0,他引:7  
利用表面修饰法合成了表面为油酸所修饰的PbO纳米微粒 ,并用红外光谱、X -射线光电子能谱、透射电子显微镜和热分析仪对产物的结构、形貌及化学状态及热稳定性进行了研究 .结果表明 :所制备的PbO纳米微粒大小均匀 ,粒径约为 5nm ,在有机溶剂及石蜡油中的分散性良好 ;表面修饰剂与纳米微粒表面之间发生化学键合作用 ,这使得PbO纳米微粒在有机溶剂及基础油中的分散性得以改善 ,并使得表面修饰层的热稳定性得以明显提高  相似文献   

3.
黄色硫化镉纳米粒子的共振瑞利散射光谱研究   总被引:6,自引:0,他引:6  
在高分子聚乙烯醇存在下 ,Cd2 + 与S2 - 反应生成黄色CdS纳米微粒。当CdS浓度小于 5× 1 0 - 4 mol L时 ,它在 4 70nm产生一个最强RRS峰 ,这是由低浓度较小粒径黄色CdS纳米微粒或黄色CdS分子与光源相互作用的结果 ;当CdS浓度大于 7.5× 1 0 - 4 mol L时 ,在 5 2 0nm产生一个最强的特征RRS峰。黄色CdS纳米微粒体系在可见光区无吸收峰。当CdS纳米微粒的浓度在 7.5× 1 0 - 4 ~ 2 .0× 1 0 - 3mol L范围内 ,所得纳米粒子的粒径为 4 3nm。实验表明 :光源发射强度分布和CdS纳米粒子的形成是产生其RRS光谱峰的主要原因  相似文献   

4.
表面修饰CdS和(CdS)ZnS纳米晶的性能研究   总被引:5,自引:1,他引:5  
在水相中合成了CdS纳米微粒,以ZnS对其进行表面修饰,得到具有核壳结构的(CdS)ZnS水溶性纳米晶。采用红外光谱、X射线衍射(XRD)、透射电镜(TEM)表征其粒度和形貌,紫外-可见吸收光谱(UV)、荧光光谱表征其光学特性。制得的CdS近似呈球形,直径为8nm;CdS纳米颗粒表面经ZnS修饰后,其荧光发射峰强度显著增强,表面态发射减弱。  相似文献   

5.
水热法合成CdS/ZnO核壳结构纳米微粒   总被引:31,自引:0,他引:31  
以半胱氨酸镉配合物为前驱体,采用水热法合成CdS纳米微粒,并以ZnO对其进行表面修饰,形成具有核/壳结构的CdS/ZnO半导体纳米微粒,CdS纳米微粒表面经ZnO修饰后,其带边发射大大增强,透射电镜显示,110℃下反应4h所得的CdS/ZnO颗粒尺寸约为20nm,电子衍射表明其结构为六方相。  相似文献   

6.
黄孟琼  王秀玲  刘勇健 《化学学报》2010,68(16):1623-1628
采用化学共沉淀法, 以FeCl2•4H2O和FeC13•6H2O为原料制备磁性Fe3O4纳米颗粒(MNPs), 采用氨基酸对其进行修饰使其表面连上氨基. 用巯基乙酸作为稳定剂合成了水溶性的CdSe/CdS量子点, 并利用偶联剂1-乙基-3-(3-二氨丙基)碳二亚胺盐酸盐(EDC)和N-羟基琥珀酰亚胺(NHS)连接氨基修饰的Fe3O4和带有羧基的CdSe/CdS, 成功制备了Fe3O4/CdSe/CdS荧光磁性纳米颗粒. 该荧光磁性纳米复合物保留了CdSe/CdS量子点优异的荧光特性, 平均粒径在40 nm左右; 磁化曲线表明此纳米复合物具有超顺磁性. 这种双官能复合纳米颗粒有望成为新型荧光磁性双标记复合微粒而广泛应用于免疫检测、荧光追踪、磁性分离等领域.  相似文献   

7.
胃蛋白酶对CdTe纳米粒子的表面修饰及分析应用   总被引:1,自引:0,他引:1  
以巯基乙酸为稳定剂和表面修饰剂, 在有机相中合成了平均粒径为3 nm左右的CdTe纳米粒子, 用胃蛋白酶改变纳米粒子的表面修饰状态并研究其系列特性. CdTe纳米粒子在320 nm处有强的紫外吸收, 在524.8 nm处有荧光发射. 经胃蛋白酶对其表面修饰后, 紫外吸收峰位不变, 但吸光强度升高, 荧光峰位蓝移至467.2 nm, 荧光强度降低. 温度、pH值及离子强度均对表面修饰产生影响. 在最佳实验条件下, 胃蛋白酶质量浓度在4—40 mg/L范围内与荧光降低值之间呈线性关系, 检测限(3σ)为0.28 mg/L(n=10), 该方法已被用于人体胃液胃蛋白酶的测定.  相似文献   

8.
以聚乙烯烷酮(PVP)为修饰剂,制备了CdS纳米微粒。实验结果表明PVP与CdS纳米微粒间存在着强的相互作用,PVP和CdS纳米微粒的荧光都在很大程度上发生淬灭。其原因在于作为修饰剂的PVP与CdS纳米微粒子间发生了特殊缔合.受激时形成共振激发态,电子能量弛豫被延迟。  相似文献   

9.
在油酸钠/十六烷基溴化铵乳液体系中合成了表面修饰中空LaF3纳米微粒. 通过透射电子显微镜(TEM)、X射线衍射(XRD)、傅立叶变换红外光谱(FTIR)、热重分析(TG-DTG)、能谱分析(EDS)等测试手段对其结构和形貌进行了表征. 同时在四球摩擦磨损试验机上考察了LaF3纳米微粒作为润滑油添加剂时, 添加浓度和施加载荷对其抗磨减摩性能的影响. 结果表明, 此纳米微粒的表面为油酸修饰, 具有中空结构, 平均粒径约17.5 nm; 表面修饰中空油酸/三氟化镧纳米微粒作为成品润滑油的添加剂, 具有良好的抗磨性能. 另外, 对中空纳米微粒的形成机理进行了分析.  相似文献   

10.
室温离子液体中银纳米微粒的制备与结构表征   总被引:21,自引:0,他引:21  
利用化学还原方法在室温离子液体1-甲基-3-丁基咪唑四氟硼酸盐中制备了金属银纳米微粒,采用X射线衍射,透射电子显微镜,傅立叶红外光谱和热分析对所制备的样品进行了结构表征.结果表明,所制备的银纳米微粒具有立方相结构,粒径约为20 nm.离子液体不但作为反应的溶剂而且作为修饰剂修饰在银纳米微粒的表面,从而有效地阻止了银纳米微粒的团聚.  相似文献   

11.
Fe doped CdS quantum dots have been prepared using simple precursors by chemical precipitation technique. Fe doped CdS quantum dots have been synthesized by mixing cadmium nitrate, sodium sulfide and adding Fe under suitable conditions. X-ray diffraction analysis reveals that undoped and Fe doped CdS crystallizes in hexagonal structure. The lattice constants of Fe doped CdS nanoparticles decreased slightly with incorporation of Fe and no secondary phase was observed. The average grain size of the nanoparticles is found to lie in the range of 2.8–4.2 nm. HRTEM results show that undoped and 3.75% Fe doped CdS nanoparticles exhibit a uniform size distribution and average size of the nanoparticles is about 2–3 nm. Raman spectra show that 1LO and 2LO peaks of the Fe doped CdS samples are slightly red shifted compared with those of undoped CdS. Optical absorption spectra of Fe doped CdS nanoparticles exhibited red shift.  相似文献   

12.
硫化镉钠米微粒在聚合物网络中的组装   总被引:14,自引:0,他引:14  
硫化镉钠米微粒在聚合物网络中的组装黄金满,杨毅,杨柏,刘式墉,沈家骢(吉林大学分子光谱与分子结构重点实验室、集成光电子国家重点实验室,长春,130023)关键词组装,纳米微粒,离子交换,透射电子显微镜,电子衍射由于纳米半导体微粒的物理和化学性质介于分...  相似文献   

13.
CdS nanoparticles with good crystallinity were prepared by hydrothermal method in microemulsion composed of polyoxyethylene laurylether/water/cyclohexane/butanol. The structure and the size of the CdS nanoparticles were analyzed by TEM and XRD. The UV-Vis optical absorption of the samples was also investigated. The results show that hydrothermal treatment is an effective method to prepare CdS nanoparticles of hexagonal structure at lower temperature. The particles were in dimensional uniformity. The diameter of the CdS nanoparticles decreased with the increase of the molar ratio of water to surfactant. The minimum diameter of the CdS nanoparticles prepared in this work was about 10 nm. Obvious blue shift appeared in the UV-Vis absorption spectra. Translated from Chinese Journal of Inorganic Chemistry, 2006, 22(5): (in Chinese)  相似文献   

14.
Amphiphilic colloids of CdS and noble metal nanoparticles, which can be dispersed both in water and organic solvents such as ethanol, N,N-dimethylformamide, chloroform, and toluene, are studied. The amphiphilic colloidal nanoparticles are synthesized by grafting the amphiphilic and thermoresponsive polymer of thiol-terminated poly(N-isopropylacrylamide) to CdS and noble metal nanoparticles. The size and morphology of the PNIPAM-grafted colloidal nanoparticles of CdS@PNIPAM can be tuned by changing the molar ratio of PNIPAM/CdS. The size of CdS@PNIPAM nanoparticles slightly decreases first from 5.5 to 4.4 nm then slightly increases from 4.4 to 6.1 nm with the decrease in the molar ratio from 1/1 to 1/10. Spherical nanoparticles of CdS@PNIPAM are synthesized at a higher molar ratio and worm-like nanoparticles are obtained at a lower molar ratio. The resultant PNIPAM-grafted colloidal nanoparticles of CdS@PNIPAM, Au@PNIPAM, Pd@PNIPAM, and Ag@PNIPAM are thermoresponsive in water and show a cloud-point temperature at about 32.5 degrees C.  相似文献   

15.
Ultrafast photoexcited carrier dynamics in CdS nanoparticles prepared by an AOT/n-heptane reversed micelle system were investigated by a femtosecond visible-pump/mid-IR probe technique. A mid-IR probe beam was found to mainly probe the ultrafast dynamics of photoexcited electrons in the conduction band. Dispersions of CdS nanoparticles with 8 different mean diameters from 2.9 to 4.1 nm were prepared by tuning the mole ratio between water and AOT (W = [H(2)O]/[AOT]) in the reversed micelle systems. The excited state lifetime strongly depended on the mean size of CdS nanoparticles with a maximum around a mean diameter of 3.5 nm. This result was explained by considering the balance between the carrier recombination rates via surface states and those via interior states. The relationship between the excited state lifetime and the size of CdS nanoparticles was drastically changed when the surface was terminated by thiol molecules.  相似文献   

16.
Chelating poly(acrylates-co-2-methylacrylic acid 3-(bis-carboxymethylamino)-2-hydroxy-propyl ester) microspheres of diameter 250-310 nm were prepared by the soap-free emulsion polymerization method for varying amounts of GMA-IDA. Then CdS/copolymer composite was generated by chemical deposition on the surface of the copolymer microspheres. By XRD analysis it is found that the chelated CdS nanoparticles are a pure cubic zinc blende structure. The CdS/copolymer composite is examined by UV-vis absorbance, photoluminescence, and TEM observation. Average CdS nanoparticle size calculated from Henglein's empirical curve is in the range of 3.0-8.0 nm and varies according to the GMA-IDA molar ratio during polymerization, pH value during chelation, and postchelation annealing temperature. Higher ratio of chelating group, pH value, and annealing temperature produce larger CdS nanoparticles. As GMA-IDA ratio increases, photoluminescence exhibits a red shift from 510 to 520 nm, photoluminescence increases, and bandwidth decreases. Photoluminescence of the CdS nanoparticle becomes negligible when diameter exceeds 5 nm.  相似文献   

17.
Cadmium sulfide (CdS) nanoparticles have been obtained by chemical precipitation onto the surface of single-crystalline silicon from an aqueous solution of ammonia, cadmium chloride (CdCl2), and thiourea, as well as from water–DMSO and water–DMF mixtures with the same concentrations of the reagents. According to data of atomic force microscopy, the samples obtained from the aqueous solution consist of individual nanoparticles and agglomerates thereof with sizes of no larger than 1 µm. Materials obtained from the water–organic mixtures are distinguished by the aggregation of CdS nanoparticles into threadlike chains. The length of the formed curved chains and the size of CdS nanoparticles composing them depend on the nature and amount of an organic component of a mixture. Atomic force microscopy, transmission electron microscopy, and photoluminescence spectroscopy data have shown that the average size of CdS nanoparticles is 2–2.5 nm depending on solvent composition.  相似文献   

18.
We introduce a modified method of powder-diffraction data analysis to obtain precise structural information on freestanding ZnS and CdS nanoparticles with diameters well below 5 nm, i.e., in a range where common bulk-derived approaches fail. The method is based on the Debye equation and allows us to access the crystal structure and the size of the particles with high precision. Detailed information on strain, relaxation effects, stacking faults, and the shape of the particles becomes available. We find significant size differences between our new results and those obtained by established methods, and conclude that a mixed zinc-blende/wurtzite stacking and significant lattice distortions occur in our CdS nanoparticles. Our approach should have direct impact on the understanding and modeling of quantum size effects in nanoparticles.  相似文献   

19.
Polyaniline(PANI) microwires containing CdS nanoparticles have been prepared by introducing hydrogen bonding and/or electrostatic interaction between mercaptocarboxylic acid capped CdS nanoparticles and PANI. SEM and TEM proved them to be wire-like structures. PL spectra of the PANI/CdS complex is blue-shifted by 14 nm compared to CdS nanoparticles in N-methylpyrrolidinone(NMP).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号