首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
ZnS and Co-doped ZnS nanoparticles have been prepared by simple chemical precipitation method. Zinc acetate, sodium sulfide, and cobalt nitrate have been used as precursors for the preparation of Co-doped ZnS quantum dots. The X-ray diffraction results revealed that the undoped and Co-doped ZnS quantum dots exhibit hexagonal structure. The average grain size of quantum dot was found to lie in the range of 2.6–3.8 nm. The surface morphology has been studied using scanning electron microscope. The compositional analysis results confirm the presence of Co, Zn and S in the sample. The optical properties of undoped and Co-doped ZnS quantum dots have been studied using absorption spectra. TEM results show that undoped and Co-doped ZnS nanoparticles exhibit a uniform size distribution with average size of 2.5–3.4 nm.  相似文献   

2.
巯萘剂表面修饰的CdS纳米微粒的合成及发光特性   总被引:6,自引:0,他引:6  
用疏萘剂(TN)作为表面修饰剂,在甲醇溶液中合成了CdS/TN纳米微粒,用TEM测得纳米微粒呈球形,其粒径约10nm,吸收光谱和荧光光谱研究表明,[S2-]/[TN]浓度比、TN和镉离子的浓度对CdS/TN纳米微粒的粒径及发光特性具有显著影响,且随着条件的改变,CdS/TN纳米微粒的发射波长红移100nm,表现出明显的量子尺寸特性.XPS显示所制得表面修饰纳米微粒的核为CdS.  相似文献   

3.
The microwave synthesis of quantum dots based on CdS has been performed, the temperature (T 180°C and 150°C) and synthesis duration (10 min and 5 min) have been varied. The analysis of the peak broadening in X-ray diffraction has shown that the average particle size in the synthesized samples is 10.02 nm for the CdS T = 180°C sample and 5.22 nm for the CdS T = 150°C sample. For both synthesis temperatures particles of sphalerite phase are formed but the sample CdS T = 180°C contained some impurity of wurtzite phase too. CdK-XANES spectra in the standard samples and quantum dots have been recorded using a Rigaku R-XAS X-ray absorption laboratory spectrometer. The theoretical analysis of the CdK-XANES spectra of bulk samples of CdS and CdS nanoparticles has been performed. It has been shown that the theoretical difference spectra between bulk CdS and CdS with decreased lattice parameters demonstrate the same tendency as the experimental difference spectra between bulk CdS and the quantum dot samples under study. It has been shown that the theoretical CdK-edge HERFD-XANES spectrum in CdS demonstrates considerably more detailed structure pointed to the need of the analysis of experimental CdK-edge HERFDXANES spectra to pick out more precise information on local atomic structure parameters of small semiconducting quantum dots.  相似文献   

4.
《印度化学会志》2021,98(12):100254
An aqueous-based green route has been demonstrated for the preparation of ZnSe quantum dots (QDs) and doping of transition metals in the presence of thiol mercaptopropionic acid (MPA) as growth moderator by refluxing at 100 ​°C. The structure and morphology of synthesized ZnSe quantum dots have been investigated by using X-ray diffraction studies (XRD), Ultraviolet–Visible spectroscopy (UV–vis), Fourier Transform Infrared Spectroscopy (FTIR) and Photoluminescence (PL) Spectroscopy. XRD studies indicate the structure of the quantum dots is cubic with diameters in the range of 4–5 ​nm. Fourier Transform Infrared (FTIR) studies proves that MPA ligands were bound strongly on the ZnSe nanocrystal surface as thiolate. The band gap energy (Eg) was calculated to be 3.8 ​eV which is blue shifted from the standard value of bulk band gap (2.60–2.70eV. Photoluminescence spectra shows broad emission value ranging between 400 and 700 ​nm due to surface defects which has been reduced by doping with transition metals (Fe, Co, Ni, Cd) in aqueous medium. The effective passivation of trap luminescence is done by doping leading to increase in photoluminescence quantum yield specifically with nickel and cadmium doped ZnSe QDs.  相似文献   

5.
ZnO nanorod thin films of different thicknesses and CdS quantum dots have been prepared by chemical method. X-ray diffraction pattern reveals that the CdS quantum dot and ZnO nanorods are of hexagonal structure. Field emission scanning electron microscope images show that the diameter of hexagonal shaped ZnO nanorods ranges from 110 to 200 nm and the length of the nanorod vary from 1.3 to 4.7 μm. CdS quantum dots with average size of 4 nm have been deposited onto ZnO nanorod surface using successive ionic layer adsorption and reaction method and the assembly of CdS quantum dot with ZnO nanorod has been used as photo-electrode in quantum dot sensitized solar cells. The efficiency of the fabricated CdS quantum dot-sensitized ZnO nanorod-based solar cell is 1.10 % and is the best efficiency reported so far for this type of solar cells.  相似文献   

6.
Mn-doped CdS nanoparticles (Cd1?x Mn x S; where x = 0.00–0.10) were synthesized by a chemical precipitation method. The synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscope, transmission electron microscope (TEM), and UV–Vis spectrometer. The XRD and TEM measurements show that the size of crystallites is in the range of 10–40 nm. Optical measurements indicated a red shift in the absorption band edge upon Mn doping. The direct allowed band gaps of undoped and Mn-doped CdS nanoparticles measured by UV–Vis spectrometer were 2.3 and 2.4 eV at 400 °C, respectively. Photocatalytic activities of CdS and Mn-doped CdS were evaluated by irradiating the solution to ultraviolet light and taking methyl orange (MO) as organic dye. It was found that 5 mol% Mn-doped CdS bleaches MO much faster than undoped CdS upon its exposure to the ultraviolet light. The experiment demonstrated that the photo-degradation efficiency of 5 mol% Mn-doped CdS was significantly higher than that of undoped CdS.  相似文献   

7.
Nanoparticles with specific properties and functions have been developed for various biomedical research applications, such as in vivo and in vitro sensors, imaging agents and delivery vehicles of therapeutics. The development of an effective delivery method of nanoparticles into the intracellular environment is challenging and success in this endeavor would be beneficial to many biological studies. Here, the well-established microelectrophoresis technique was applied for the first time to deliver nanoparticles into living cells. An optimal protocol was explored to prepare semiconductive quantum dots suspensions having high monodispersity with average hydrodynamic diameter of 13.2–35.0 nm. Micropipettes were fabricated to have inner tip diameters of approximately 200 nm that are larger than quantum dots for ejection but less than 500 nm to minimize damage to the cell membrane. We demonstrated the successful delivery of quantum dots via small electrical currents (–0.2 nA) through micropipettes into the cytoplasm of living human embryonic kidney cells (roughly 20–30 μm in length) using microelectrophoresis technique. This method is promising as a simple and general strategy for delivering a variety of nanoparticles into the cellular environment.  相似文献   

8.
In the present work, it is reported for the first time the bioconjugation of CdS quantum dots (QDs) directly with bovine serum albumin (BSA) using a one-step procedure via aqueous route at room temperature by methods of colloidal chemistry. Essentially, the bioconjugates were developed based on BSA as capping ligand for the nucleation and stabilization of CdS nanoparticles using cadmium perchlorate and thioacetamide as precursors. UV-visible spectroscopy was used to characterize the kinetics and the relative stability of CdS nanoparticles. The CdS nanocrystals were produced with the calculated average particle size below 4.0 nm, indicating they were in the so-called "quantum-size confinement range". The results have clearly indicated that BSA was effective on nucleating and stabilizing the colloidal CdS quantum dots.  相似文献   

9.
荧光磁性双功能树状分子微球的制备与表征   总被引:1,自引:0,他引:1  
采用化学共沉淀法, 以FeCl3·6H2O和FeSO4·7H2O为原料制备了磁性Fe3O4纳米颗粒, 采用树状大分子对其进行修饰, 然后通过树状大分子具有的大量空腔及末端丰富的氨基, 经吸附、 键合, 与大量巯基乙酸修饰的CdSe/CdS量子点连接, 得到三代具有荧光磁性双功能的树状分子微球, 并对其进行结构表征与性能测试. 结果表明: 三代复合后的微球的平均粒径分别为15, 34和49 nm; 一代荧光磁性微球的发光性能最佳, 其量子产率达24.1%; 零代荧光磁性微球磁性能最优, 其饱和磁化强度为15.96 A·m2/kg. 这种具有荧光和磁性的双功能纳米复合微粒有望在免疫检测、 靶向治疗、 荧光追踪和磁性分离等方面得到广泛应用.  相似文献   

10.
This work reports a new experimental methodology for the synthesis of ultra small zinc sulfide and iron doped zinc sulfide quantum dots in aqueous media. The nanoparticles were obtained using a simple procedure based on the precipitation of ZnS in aqueous solution in the presence of 2-mercaptoethanol as a capping agent, at room temperature. The effect of Fe(3+) ion concentration as dopant on the optical properties of ZnS was studied. The size of quantum dots was determined to be about 1nm, using scanning tunneling microscopy. The synthesized nanoparticles were characterized by X-ray diffraction, UV-Vis absorption and photoluminescence emission spectroscopies. The presence and amount of iron impurity in the structure of Zn((1-x))Fe(x)S nanocrystals were confirmed by atomic absorption spectrometry. A blue shift in band-gap of ZnS was observed upon increasing incorporation of Fe(3+) ion in the iron doped zinc sulfide quantum dots. The photoluminescence investigations showed that, in the case of iron doped ZnS nanoparticles, the emission band of pure ZnS nanoparticles at 427nm shifts to 442nm with appearance of a new sharp emission band around 532nm. The X-ray diffraction analysis indicated that the iron doped nanoparticles are crystalline, with cubic zinc blend structure, having particle diameters of 1.7±022nm. Finally, the interaction of the synthesized nanoparticles with bovine serum albumin was investigated at pH 7.2. The UV-Vis absorption and fluorescence spectroscopic methods were applied to compare the optical properties of pure and iron doped ZnS quantum dots upon interaction with BSA. It was proved that, in both cases, the fluorescence quenching of BSA by the quantum dots is mainly a result of the formation of QDs-BSA complex in solution. In the steady-state fluorescence studies, the interaction parameters including binding constants (K(a)), number of binding sites (n), quenching constants ( [Formula: see text] ), and bimolecular quenching rate constants (k(q)) were determined at three different temperatures and the results were then used to evaluate the corresponding thermodynamic parameters ΔH, ΔS and ΔG.  相似文献   

11.
One-dimensional (1D) undoped and Fe doped ZnO nanorods of average length ∼1 μm and diameter ∼50 nm have been obtained using a microwave-assisted synthesis. The magnetization (M) and coercivity (Hc) value obtained for undoped ZnO nanorods at room temperature is ∼5×10−3 emu/g and ∼150 Oe, respectively. The Fe doped ZnO samples show significant changes in M -H loop with increasing doping concentration. Both undoped and Fe doped ZnO nanorods exhibit a Curie transition temperature (Tc) above 390 K. Electron spin resonance and Mössbauer spectra indicate the presence of ferric ions. The origin of ferromagnetism in undoped ZnO nanorods is attributed to localized electron spin moments resulting from surface defects/vacancies, where as in Fe doped samples is explained by F center exchange mechanism.  相似文献   

12.
《Solid State Sciences》2012,14(5):567-573
A single wurtzite phase of cadmium sulfide cluster is investigated by ab-initio molecular dynamics simulations at different temperatures, ranging from 100 K to 600 K. In this study we propose a possible procedure to characterize the CdS quantum dots system by means of molecular dynamics calculations using a standard Car-Parrinello scheme. In order to ensure the accuracy of the numerical approach, preliminary calculations to test pseudopotentials, cutoff and box size on both single atoms systems and Cd–Cd, S–S, Cd–S dimers have been performed. Calculated binding energies and bond lengths are obtained in good agreement with experimental data. Subsequently, an uncapped CdS cluster with size below 2 nm, 48 atoms of cadmium and 48 atoms of sulfur, in a wurtzite geometry was structurally optimized to minimize internal stresses. The CdS cluster has been carefully characterized structurally at several temperatures up to T = 600 K. At the temperature of 340 K atomic diffusion on the surface allows the onset of a new stable atomic configuration.  相似文献   

13.
表面修饰的硫化镉纳米粒子荧光性能优异而稳定,激发光谱宽,发射光谱窄而对称且发射波长可通过改变材料的粒径大小和组成来调控,因而在生物样本尤其是活组织的多色成像中极为有用,能有效避免因样本自身发光和光散射导致的信号干扰。硫化镉纳米粒子的研究已被许多科研工作者所青睐,是目前热点研究领域之一。近年来,水分散性硫化镉纳米粒子作生物荧光标记物的研究取得了长足的进展。本文综述了水分散性硫化镉纳米粒子的制备方法研究进展,分析了各种制备方法的优点与不足之处。  相似文献   

14.
《印度化学会志》2022,99(11):100744
ZnO nanoparticles are one of the prominent photocatalysts for environmental applications due to its high redox ability, nontoxic and higher stability. This report explains the synthesis of ZnO nanoparticles by a simple solution combustion method using zinc nitrate hexahydrate as an oxidizing agent and incense stick powder as fuel at 400 °C. Several techniques were adopted for the characterization of the obtained product. X-ray diffraction (XRD) pattern shows that a lower concentration of fuel gives pure ZnO and a higher concentration of fuel results in calcium doped ZnO with a cubic phase having a crystallite size of 32–28 nm. UV–vis spectrum shows that as the fuel concentration increases, band gap decreases and reaches to 3.33 eV for 3 g of fuel. Spongy networks with many pores wereobserved in the scanning electron microscope (SEM) and transmission electron microscope (TEM) images showed the average particle size of Ca doped ZnO NPs is about 20 nm. Pure and Ca doped ZnO nanoparticles were examined for photocatalytic degradation of methylene blue (MB) dye under UV light irradiation. The results prove that Ca doped ZnO nanoparticles show good photocatalytic activity.  相似文献   

15.
Nanoparticles of CdS were prepared at 303 K by aqueous precipitation method using CdSO4 and (NH4)2S in presence of the stabilizing agent thioglycerol. Adjustment of the thioglycerol (T) to ammonium sulphide (A) ratio (T:A) from 1:25 to 1:3.3 was done during synthesis and nanoparticles of different size were obtained. The prepared colloids were characterized by UV-vis and photoluminescence (PL) spectroscopic studies. Prominent first and second excitonic transitions are observed in the UV-vis spectrum of the colloid prepared with a T:A ratio of 1:3.3. Particle size analysis was done using XRD, high resolution TEM and dynamic light scattering and found to be approximately 3 nm. UV-vis and PL spectral features also agree with this particle size in colloid with T:A of 1:3.3. The band gap of CdS quantum dots has increased from the bulk value 2.4-2.9 eV. PL spectra show quantum size effect and the peak is shifted from 628 to 556 nm when the ratio of T:A was changed from 1:25 to 1:3.3. Doping of CdS with Zn2+ and Cu2+ is found to enhance the PL intensity. PL band shows blue-shift and red-shift on doping with Zn2+ and Cu2+, respectively. UV and PL spectral features of the CdS/Au hybrid nanoparticles obtained by a physical mixing of CdS and Au nanoclusters in various volume ratios is also discussed. Au red-shifts and rapidly quenches the PL of CdS. An additional low energy band approximately 650 nm is observed in the UV visible spectrum of the hybrid nanoparticles.  相似文献   

16.
CdS:Cu nanoparticles were successfully synthesized by a coprecipitation method using mercaptoethanol as a capping agent. Thermoluminescence (TL) spectra of CdS:Cu nanoparticles were studied for different exposure time. The synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV–Vis spectrometry. XRD and SEM measurements showed that the size of the crystallites was in the range 8–17 nm. Optical measurements indicated a blue-shift in the absorption band edge upon Cu doping. The direct allowed bandgap of undoped and Cu-doped CdS nanoparticles was 2.53 and 2.64 eV, respectively. We also calculated the kinetic parameters for Cu-doped CdS nanoparticles from the TL glow curves measured at 254, 249, and 244 °C with variation of the ultra-violet (UV) exposure time. The glow curve shows general order kinetics, and its kinetic parameters are calculated.  相似文献   

17.
Formation of CdS quantum dots (Q dots) on the vertically aligned ZnO nanorods electrode was carried out by chemical bath deposition. The diameter and thickness of ZnO nanorods are ~100–150 nm and ~1.6 μm, respectively, and CdS Q dots on ZnO nanorods have a diameter of smaller than 15 nm. In application of the Q dots-sensitized solar cells, composite film exhibited a power conversion efficiency of 0.54% under air mass 1.5 condition (80 mW/cm2), and incident-photon-to-current conversion efficiency showed 18.6%.  相似文献   

18.
The present work is planned for a simple, inexpensive and efficient approach for the synthesis of Cu1-xFexS (x = 0.00, 0.01, 0.03, 0.05 and 0.07) nanoparticles via simplistic chemical co-precipitation route by using ethylene diamine tetra acetic acid (EDTA) as a capping molecules. As synthesized nanoparticles were used as competent catalysts for degradation of rhodamine-B organic dye pollutant. The properties of prepared samples were analyzed with energy dispersive analysis of X-rays (EDAX), X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-visible optical absorption spectroscopy, Fourier transform infrared (FTIR) spectra, Raman spectra and vibrating sample magnetometer (VSM). EDAX spectra corroborated the existence of Fe in prepared nanoparticles within close proximity to stoichiometric ratio. XRD, FTIR and Raman patterns affirmed that configuration of single phase hexagonal crystal structure as that of (P63/mmc) CuS, without impurity crystals. The average particle size estimated by TEM scrutiny is in the assortment of 5–10 nm. UV-visible optical absorption measurements showed that band gap narrowing with increasing the Fe doping concentration. VSM measurements revealed that 3% Fe doped CuS nanoparticles exhibited strong ferromagnetism at room temperature and changeover of magnetic signs from ferromagnetic to the paramagnetic nature with increasing the Fe doping concentration in CuS host lattice. Among all Fe doped CuS nanoparticles, 3% Fe inclusion CuS sample shows better photocatalytic performance in decomposition of RhB compared with the pristine CuS. Thus as synthesized Cu0·97Fe0·03S nanocatalysts are tremendously realistic compounds for photocatalytic fictionalization in the direction of organic dye degradation under visible light.  相似文献   

19.
The structure and optical characteristics of CdS nanoparticles synthesized in low-density polyethylene were studied. The particles have a hexagonal structure of the greenockite type; the presence of the cubic phase is also possible. The position of the absorption edge slightly depends on the average size of particles because of their polydispersity. It has been shown that the luminescence spectra of nanoparticles are strongly distorted by scattering and self-adsorption in the samples. To correct the spectra, a program for Monte-Carlo simulation of luminescence propagation in the samples was developed. It was shown that the luminescence band at 500–550 nm in the experimental spectra might be spurious because of luminescence absorption in the edge region.  相似文献   

20.
Pure and (0.5–3 at%) vanadium doped TiO2 nanoparticles have been synthesized by wet chemical method. The as synthesized materials have been characterized by using XRD, atomic force microscope (AFM), Raman, EPR and UV–vis spectroscopy techniques. From XRD studies, both pure as well as vanadium doped TiO2 have been found to show pure anatase phase. The value of lattice constant c is smaller in doped TiO2 as compared to undoped and has been found to decrease with increase in vanadium concentration. AFM studies show formation of spherical particles with particle size ~23 nm in all the samples. Photochromic behavior of these materials has been studied by making their films in alkyd resin. Vanadium doped TiO2 films show reversible change in color from beige-yellow to brownish violet on exposure to UV light. The mechanism of coloration and bleaching process has been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号