首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2,2 -联吡啶钌配合物催化CO2制备环状碳酸酯机理研究   总被引:1,自引:0,他引:1  
卜站伟  王志强  秦刚  崔元臣  曹少魁 《化学学报》2010,68(18):1871-1875
研究了2,2 -联吡啶钌配合物RuCl3(2,2 -bipy)(CH3OH)与十六烷基三甲基氯化铵(CTAC)组成的催化体系催化二氧化碳与不同的环氧化合物进行环加成反应制备环状碳酸酯. 在此基础上, 利用电喷雾质谱(ESI-MS)对RuCl3(2,2 -bipy)(CH3OH)/CTAC催化CO2与环氧丙烷(PO)反应制备碳酸丙烯酯(PC)进行了研究, 检测到了反应中间态配合物RuCl3(2,2 -bipy)(PO)与RuCl3(2,2 -bipy)(PC), 为该反应机理研究提供了实验证据. 研究结果表明, RuCl3(2,2 -bipy)(CH3OH)/CTAC催化体系催化CO2与环氧化合物的反应首先是通过环氧化合物与RuCl3(2,2 -bipy)(CH3OH)中的甲醇分子发生配体交换引发的, 经CTAC中的氯离子进攻环氧化合物开环、二氧化碳插入Ru—O键、分子内关环及消去生成环状碳酸酯.  相似文献   

2.
二氧化碳(CO2)不仅仅是一种温室气体,更是一种重要的、有效的碳一资源,其来源丰富、无毒、无污染、不易燃烧,可用于生产有机化学品、材料、糖类等.由于CO2分子中的碳处于最高氧化态,且其分子具有热力学和动力学惰性,因此人们不断探索新型反应途径,以及新型的催化体系来有效资源化利用CO2.近年来,利用各种不饱和烃类,在过渡金属催化剂协助下催化CO2与烯烃生成不饱和羧酸及其衍生物引起了极大关注.其中,催化CO2/C2H4耦合反应制备丙烯酸及其衍生物因其原子经济性而备受瞩目.以镍系催化体系为主的过渡金属催化CO2/C2H4偶联反应是CO2化学转化与高值利用非常重要的研究热点之一.综述了近年来CO2/C2H4偶联反应的最新进展,对相应的催化反应机理进行了评述.从多个角度对各位学者的研究进行分析比...  相似文献   

3.
非对称Schiff碱过渡金属配合物模拟酶催化烯烃环氧化(Ⅰ)   总被引:4,自引:0,他引:4  
研究了温和条件下以亚碘酰苯为氧源,非对称性的和对称性的Mn(Ⅲ)Schiff碱配合物[Mn(Ⅲ)(CBP-phen-Xsal)Cl,X=H,Cl,Br,NO2,CH3,OCH3]和[Mn(Ⅲ)(CBP-R-CBP)Y,R=CH2CH2-,-CH(CH3)CH2-,-C6H4-;Y=Cl,OCH3]催化非官能性烯烃苯乙烯、环己烯和α-甲基苯乙烯的环氧化反应.结果表明,非对称配合物Mn(Ⅲ)(CBP-phen-Xsal)Cl是一个良好的催化非官能性烯烃环氧化反应的催化剂体系;中心金属离子Mn(Ⅲ)的电子结合能越小,催化环氧化效果越好;对上述3种烯烃环氧化物最好收率分别达到73%、100%和92%.  相似文献   

4.
自工业革命以来, CO2的过量排放导致了环境污染和气候变化,对人类可持续发展造成了极大的威胁.由可再生电力驱动的电催化CO2还原反应(CO2RR)技术可在较温和的条件下将CO2转化为高附加价值的燃料和化学品,因而是一种有效的CO2转换和利用的方法.尽管电催化CO2RR已经取得了较大的研究进展,但其工业化应用依旧面临着许多挑战:CO2RR的反应路径涉及多步电子-质子转移,其产物组分较复杂(包括C1到C3的产物),并且反应过程伴随着析氢反应(HER)副反应发生.此外,不同电催化剂的使用以及实验操作条件均对CO2RR影响较大,导致目前CO2RR催化剂性能尚不够理想,因而难以获得实际应用.为进一步开发性能良好的电催化CO2RR体系,以及认识实际反应过程中催化体系真正的活性位点,理解电催化剂表面结构演变机制至关重要.本文综述了CO  相似文献   

5.
开发高效的催化剂用于催化还原CO2转化为甲酸和它的盐类已经成为研究的热点,是因为将CO2转化为C1产物不仅可以解决CO2的含量升高带来的环境问题,还可以解决化石能源燃烧日趋严重的问题。贵金属配合物催化CO2转化为甲酸和甲酸盐类是目前这类反应最有效的方式,尤其是Ru、Ir和Rh等贵金属。我们之前的研究结果表明Ir(Ⅲ), Ru(Ⅱ)类配合物催化还原CO2转化为甲酸盐的活性是由配合物Ru―H键的成键性质决定的。它们能高活性的催化CO2是由于它们都含有同一种特点的Ru―H键,是由Ru的sd2杂化轨道和H的1s轨道杂化而成的,而且这一特点可以被活性氢的对位配体显著影响。鉴于硼基配体具有强的对位效应,我们基于高活性的均相催化剂Ru(PNP)(CO)H2 (PNP = 2, 6-二(二叔丁基磷甲基)-吡啶)设计了Ru-PNP-HBcat和Ru-PNP-HBpin,并计算了二者催化还原CO2的活性。Bcat和Bpin配体是实验上常用的硼基配体。我们的计算结果表明Ru-PNP-HBcat和Ru-PNP-HBpin有比Ru-PNP-H2更长的Ru―H键、亲核性更强的活性氢,其Ru―H键中的Ru原子的d轨道杂化成分的贡献也比Ru-PNP-H2的更少。相应地Ru-PNP-HBcat和Ru-PNP-HBpin活化CO2的能垒比Ru-PNP-H2低。而且Ru-PNP-H2、Ru-PNP-HBcat和Ru-PNP-HBpin催化CO2转化为甲酸盐的能垒分别为76.2、67.8、54.4 kJ∙mol-1,表明Ru-PNP-HBpin具有最高的催化活性。因此,钌配合物催化还原CO2的活性可由硼基配体强的对位效应和Ru―H键的成键性质来调控。  相似文献   

6.
化石燃料的广泛使用导致大气中CO2的排放量急剧增加,进而引起全球变暖和海洋酸化等一系列问题.CO加氢(费托合成)反应是利用非石油来源的原料生产液体燃料和化学品的一种重要途径.同时,利用可再生的H2将CO2转化为高附加值的产品有利于减少对化石燃料的依赖,减轻由于大气中CO2浓度过高带来的负面影响.开发新型、高效、稳定的催化剂是费托合成和CO2加氢制高附加值烃的关键因素之一.Fe基、Co基和Ru基催化剂是费托合成中常用的催化剂.而在CO2加氢反应中,Co基和Ru基催化剂上主要发生甲烷化反应,几乎没有长链烃生成.Fe基催化剂在费托合成和CO2加氢反应中均表现出优异的催化生成长链烃性能.同时,Fe储量丰富和价格便宜的特点也促进Fe基催化剂在两个反应中的广泛应用.一般认为,在Fe基催化剂上CO2通过逆水煤气变换反应生成CO,CO通过费托合成反应继续加氢生成烃类.因此,CO2加氢反应和费托合成反应有相似之处,同时也有较大的区别.本文从活性相、助剂和载体的角度综述了各组分在Fe基催化剂催化CO/CO2加氢反应中的作用,总结了其中的区别与联系.催化剂在反应中会发生复杂的相变过程,形成多种铁物种;其中,碳化铁(χ-Fe5C2,ε-Fe2C,Fe7C3和θ-Fe3C)在费托合成反应中是C-C偶联的活性相,但对于θ-Fe3C现还存在一些争议.在CO2加氢反应中Fe3O4催化逆水煤气变换反应,碳化铁催化CO加氢反应.金属助剂对CO/CO2加氢反应的促进作用较为相似,在两个反应中碱金属的促进作用最为明显.费托合成反应对载体有较强的适应性,而CO2加氢反应对载体敏感性较强,Al2O3,ZrO2和碳材料载体效果较好.本文还总结了近些年来基于对活性相、助剂和载体的深入理解设计制备的一些新型催化剂及其在费托合成和CO2加氢反应中的应用,包括具有新颖结构的催化剂、金属-有机骨架衍生催化剂以及与沸石分子筛结合的双功能催化剂.最后,还分析了目前Fe基催化剂在费托合成和CO2加氢反应应用中所面临的问题和挑战,并对未来的发展趋势进行了展望.  相似文献   

7.
化石燃料的广泛使用导致大气中CO2的排放量急剧增加,进而引起全球变暖和海洋酸化等一系列问题.CO加氢(费托合成)反应是利用非石油来源的原料生产液体燃料和化学品的一种重要途径.同时,利用可再生的H2将CO2转化为高附加值的产品有利于减少对化石燃料的依赖,减轻由于大气中CO2浓度过高带来的负面影响.开发新型、高效、稳定的催化剂是费托合成和CO2加氢制高附加值烃的关键因素之一.Fe基、Co基和Ru基催化剂是费托合成中常用的催化剂.而在CO2加氢反应中,Co基和Ru基催化剂上主要发生甲烷化反应,几乎没有长链烃生成.Fe基催化剂在费托合成和CO2加氢反应中均表现出优异的催化生成长链烃性能.同时,Fe储量丰富和价格便宜的特点也促进Fe基催化剂在两个反应中的广泛应用.一般认为,在Fe基催化剂上CO2通过逆水煤气变换反应生成CO,CO通过费托合成反应继续加氢生成烃类.因此,CO2加氢反应和费托合成反应有相似之处,同时也有较大的区别.本文从活性相、助剂和载体的角度综述了各组分在Fe基催化剂催化CO/CO2加氢反应中的作用,总结了其中的区别与联系.催化剂在反应中会发生复杂的相变过程,形成多种铁物种;其中,碳化铁(χ-Fe5C2,ε-Fe2C,Fe7C3和θ-Fe3C)在费托合成反应中是C-C偶联的活性相,但对于θ-Fe3C现还存在一些争议.在CO2加氢反应中Fe3O4催化逆水煤气变换反应,碳化铁催化CO加氢反应.金属助剂对CO/CO2加氢反应的促进作用较为相似,在两个反应中碱金属的促进作用最为明显.费托合成反应对载体有较强的适应性,而CO2加氢反应对载体敏感性较强,Al2O3,ZrO2和碳材料载体效果较好.本文还总结了近些年来基于对活性相、助剂和载体的深入理解设计制备的一些新型催化剂及其在费托合成和CO2加氢反应中的应用,包括具有新颖结构的催化剂、金属-有机骨架衍生催化剂以及与沸石分子筛结合的双功能催化剂.最后,还分析了目前Fe基催化剂在费托合成和CO2加氢反应应用中所面临的问题和挑战,并对未来的发展趋势进行了展望.  相似文献   

8.
以水杨醛和邻氨基酚为起始原料, 合成了N-亚水杨醛基-2-氨基苯酚配体(H2SAP); H2SAP与乙酰丙酮钼的无水乙醇溶液反应, 制得席夫碱钼(Ⅵ)配合物MoO2(SAP)(EtOH); 采用元素分析、红外光谱、紫外光谱、1H NMR及热重分析对配合物进行了表征. 以MoO2(SAP)(EtOH)为催化剂, 研究了其催化合成环氧大豆油的催化性能, 考察了氧源种类、反应温度、反应时间及溶剂/助剂等因素对环氧化反应的影响. 结果表明, 以65%(质量分数)叔丁基过氧化氢(65% TBHP)为氧源, 在80℃时反应4 h, 转化率和选择性分别为43.0%和67.2%, MoO2(SAP)(EtOH)在催化体系中表现出强烈的助剂效应, 当加入强给电子配体咪唑时, 环氧产率显著降低. 同时对该配合物催化环氧化机理进行了初步探讨.  相似文献   

9.
Ag 《燃料化学学报》2018,46(8):1009-1017
将一种简单的双组分催化体系即Ag(I)/(nC7H154NBr应用于常压下催化氨基甲酸盐和炔丙醇双组分反应制备β-羰基氨基甲酸酯。该方法具有简便、高效的优点,并且不需要使用配体,可以将一系列的炔丙醇和仲胺底物转化为相应的氨基甲酸酯产物。该方法通过CO2的定量催化转化,提高了CO2的利用效率。  相似文献   

10.
采用催化加氢的方式将CO2转化为甲醇,既可以减少CO2排放,又制备了化学品,该反应具有重要的研究意义.氧化铟(In2O3)作为CO2加氢制甲醇催化剂,由于其较高的CO2活化能力和甲醇选择性,被科研工作者广泛研究.其中,将具有良好解离H2能力的过渡金属元素引入In2O3(M/In2O3)是有效提高催化剂性能的策略之一,然而,M/In2O3体系催化CO2加氢反应机理及活性位点仍不清楚.本文引入Co制备了In-Co二元金属氧化物催化剂应用于CO2加氢制甲醇,结果表明,相较于In2O3,In-Co催化剂性能有很大提升,其中In1-Co4催化剂上甲醇时空产率(9.7 mmol·gcat-1 h-1)是In2O3(2.2 mmol·gcat-1 h-1)的近5倍(反应条件:P=4.0 MPa,T=300℃,GHSV=24000 cm3 STP gcat-1 h-1,H2/CO2=3).值得注意的是,尽管Co是金属元素的主体,In-Co催化剂中Co催化CO2甲烷化的活性受到明显抑制.本文还通过多种技术系统研究了催化剂结构与反应选择性转变间的关系.采用电感耦合等离子体发射光谱、粉末X射线衍射、拉曼光谱、X射线光电子能谱和透射电子显微镜等对催化剂结构以及表面性质进行了表征.结果表明,在H2还原气氛诱导下,In-Co催化剂表面发生重构,形成以CoO为核,以In2O3为壳的核壳结构,其在高压反应后仍能保持稳定;更重要的是,该核壳结构可以显著增强In-Co催化剂吸附及活化CO2的能力.CO2加氢反应动力学研究表明,Co催化剂上H2分压对CO2加氢为零级反应,而H2分压在In-Co上的反应级数为正数;In-Co催化剂上,CO2分压的反应级数接近于零,表明CO2及其衍生物在In-Co的表面吸附饱和,但在纯Co上,则不会发生这种饱和吸附.通过原位DRIFTS研究了催化反应路径和关键中间物种的吸附及反应行为,发现CO2加氢在纯Co和In-Co上的催化机理均遵循甲酸盐路径.在该催化路径中,CO2首先加氢为甲酸盐(*HCOO)物种,随后加氢为甲氧基(*CH3O).*CH3O在Co催化剂上进一步加氢生成CH4,而*CH3O在In-Co催化剂上则会脱附生成CH3OH.根据表征结果,本文认为,在还原性气氛下,In-Co发生了重构并生成表面富In2O3的核壳状结构,显著提高了催化剂对CO2和含碳物种的吸附能力.Co和In-Co催化剂对CO2加氢反应选择性的差异归因于催化剂对CO2和对*HCOO等含碳中间物种的吸附稳定性不同.CO2及其衍生的含碳中间物种在In-Co催化剂上的吸附能力比在Co催化剂上强,形成了较合适的催化剂表面C/H比,从而使*CH3O能够脱附为CH3OH,而不是进一步加氢为CH4.综上,本文研究为高活性In-Co催化剂体系在CO2加氢反应中的催化机理及行为提供了解释,为金属-氧化铟(M-In2O3)催化剂体系的设计提供了参考.  相似文献   

11.
使用多齿希夫碱配体通过溶剂热的方法合成了一例新的Ho4配合物,即[Ho4(NO3)2(acac)4(L)2(CH3OH)2]·2CH3CN,其中H4L=(E)-2-(羟甲基)-2-(((2-羟基萘-1-基)亚甲基)氨基)丙烷-1,3-二醇,acac=乙酰丙酮。X射线衍射分析表明,配合物呈中心对称的四核结构,中心的Ho1(Ⅲ)和Ho2(Ⅲ)均为八配位的三角十二面体几何构型。配合物1具有良好的溶剂稳定性。磁性研究表明配合物1具有慢磁弛豫行为。据我们所知,配合物1是一例少有的在零直流场下具有慢磁驰豫行为的Ho4配合物。值得一提的是,配合物1在催化CO2与环氧化合物的环加成反应中表现出较高的催化活性。  相似文献   

12.
采用催化加氢的方式将CO2转化为甲醇,既可以减少CO2排放,又制备了化学品,该反应具有重要的研究意义.氧化铟(In2O3)作为CO2加氢制甲醇催化剂,由于其较高的CO2活化能力和甲醇选择性,被科研工作者广泛研究.其中,将具有良好解离H2能力的过渡金属元素引入In2O3(M/In2O3)是有效提高催化剂性能的策略之一,然而,M/In2O3体系催化CO2加氢反应机理及活性位点仍不清楚.本文引入Co制备了In-Co二元金属氧化物催化剂应用于CO2加氢制甲醇,结果表明,相较于In2O3,In-Co催化剂性能有很大提升,其中In1-Co4催化剂上甲醇时空产率(9.7 mmol·gcat-1 h-1)是In2O3(2.2 mmol·gcat-1 h-1)的近5倍(反应条件:P=4.0 MPa,T=300℃,GHSV=24000 cm3 STP gcat-1 h-1,H2/CO2=3).值得注意的是,尽管Co是金属元素的主体,In-Co催化剂中Co催化CO2甲烷化的活性受到明显抑制.本文还通过多种技术系统研究了催化剂结构与反应选择性转变间的关系.采用电感耦合等离子体发射光谱、粉末X射线衍射、拉曼光谱、X射线光电子能谱和透射电子显微镜等对催化剂结构以及表面性质进行了表征.结果表明,在H2还原气氛诱导下,In-Co催化剂表面发生重构,形成以CoO为核,以In2O3为壳的核壳结构,其在高压反应后仍能保持稳定;更重要的是,该核壳结构可以显著增强In-Co催化剂吸附及活化CO2的能力.CO2加氢反应动力学研究表明,Co催化剂上H2分压对CO2加氢为零级反应,而H2分压在In-Co上的反应级数为正数;In-Co催化剂上,CO2分压的反应级数接近于零,表明CO2及其衍生物在In-Co的表面吸附饱和,但在纯Co上,则不会发生这种饱和吸附.通过原位DRIFTS研究了催化反应路径和关键中间物种的吸附及反应行为,发现CO2加氢在纯Co和In-Co上的催化机理均遵循甲酸盐路径.在该催化路径中,CO2首先加氢为甲酸盐(*HCOO)物种,随后加氢为甲氧基(*CH3O).*CH3O在Co催化剂上进一步加氢生成CH4,而*CH3O在In-Co催化剂上则会脱附生成CH3OH.根据表征结果,本文认为,在还原性气氛下,In-Co发生了重构并生成表面富In2O3的核壳状结构,显著提高了催化剂对CO2和含碳物种的吸附能力.Co和In-Co催化剂对CO2加氢反应选择性的差异归因于催化剂对CO2和对*HCOO等含碳中间物种的吸附稳定性不同.CO2及其衍生的含碳中间物种在In-Co催化剂上的吸附能力比在Co催化剂上强,形成了较合适的催化剂表面C/H比,从而使*CH3O能够脱附为CH3OH,而不是进一步加氢为CH4.综上,本文研究为高活性In-Co催化剂体系在CO2加氢反应中的催化机理及行为提供了解释,为金属-氧化铟(M-In2O3)催化剂体系的设计提供了参考.  相似文献   

13.
羰基化反应是有机合成化学中常用的方法之一,但常规的羰基化反应大多要求高温(150~200℃)、高压(10~20 M Pa)或使用贵金属催化剂(如钌、铑、铱等),并且C1源多用一氧化碳[1].开发和利用CO2这一丰富的C1资源,并最大限度地降低其排放量具有挑战意义.但CO2活化比较困难,在通常条件下难以转化成其它化学品[2].在光促进下的羰基化反应可克服上述困难,使反应在温和条件及非贵金属催化下完成,同时可用CO2代替CO作为C1源,因此这是一个对环境友好的工艺[3].本文报道烯烃在光促进常温常压和非贵金属钴配合物催化下与二氧化碳的羰基化反应,同时通过13CO213CH3OH同位素实验,对反应产物的结构进行了分析.  相似文献   

14.
在以H2O为质子源的光催化二氧化碳还原反应(CO2RR)过程中,光解H2O产氢气(H2)被认为是一个竞争反应.因此,光催化CO2RR过程需要抑制H2的产生,以提高碳氢产物的选择性和产率.以CO2和H2为反应物的逆水气变换反应(RWGS)是常见的CO2加氢反应,在较高的温度和催化剂作用下生成CO和H2O.目前,光催化CO2RR研究主要聚焦于产物的选择性,而有关光解H2O产生的还原性气体H2在光热效应的促进下成为CO2RR中新的质子源研究较少.光热催化是一种新的高效催化反应方式,在反应过程中需要光照和加热.光照能够促进半导体光生载流子的激发,热效应则能降低反应物分子的活化势垒,并能够促进中间产物的表面迁移以及生成物的脱附.利用光热催化热力学和动力学上的有利条件,为以H2  相似文献   

15.
构建了用于催化烯烃与过氧化氢环氧化反应的高效、 绿色催化反应体系. 首先, 通过水热合成法制备了纳米SnO2, 并在320 ℃下煅烧. 随后, 对所有催化剂进行X射线衍射(XRD)、 紫外-可见漫反射光谱(UV-Vis)、 傅里叶变换红外光谱(FTIR)、 扫描电子显微镜(SEM)和透射电子显微镜(TEM)表征. 进一步将催化剂用于以H2O2水溶液为氧化剂环氧化各种官能化烯烃(包括环烯烃, 苯乙烯和直链烯烃)的反应, 以高转化率和高选择性得到了环氧化物. 在相似的反应条件下, 发现合成的纳米SnO2-170催化剂在催化1-甲基环己烯与H2O2的环氧化反应中的活性最佳, 在2 h内1-甲基环己烯的转化率达到100%, 环氧化物选择性达到100%.  相似文献   

16.
以二苯基-1-甲基咪唑膦(dpim)为配体制备了一种新型的配合物催化剂Ni(dpim)2Cl2. 循环伏安研究表明,Ni(dpim)2Cl2配合物在氮气气氛下表现出两步还原的电化学行为,在-0.7 V下为两电子的不可逆还原,在-1.3 V下为单电子准可逆还原. 向电解液中通入CO2后,在-1.3 V下的还原峰变得不可逆,且其峰电流从0.48 mA·cm-2增大到0.55 mA·cm-2. 在质子源(CH3OH)存在的条件下,该还原峰电流可继续增大到0.72 mA·cm-2. 该研究结果表明,Ni(dpim)2Cl2配合物对CO2还原具有良好的电催化性能,且其电催化还原过程符合ECE机理. 在-1.3 V下恒电位电解得到的还原产物主要为CO,催化转换频率(Turnover of Frenquency, TOF)为0.17 s-1.  相似文献   

17.
电催化二氧化碳还原反应(CO2RR)可以将二氧化碳转化为具有高经济价值的碳氢化合物,被认为是实现碳中和并缓解能源危机的一种有潜力的技术.铜(Cu)作为一种最有应用前景的非贵金属催化剂之一,表现出较高的催化CO2RR转化为多碳产物(C2+)的活性.然而,电催化CO2还原成C2+产物涉及一个动力学过程缓慢的C-C偶联反应,这导致C2+产物的选择性较低,电流密度低,阻碍了其在工业电解槽中的实际应用.同时,CO2RR产物的选择性不仅取决于热力学速率决定步骤,还取决于传质控制动力学.CO2RR发生在固-气-液三相反应界面,气-液的平衡扩散可以有效抑制析氢竞争反应,进而提高CO2RR的反应效率.本文设计合成了一种富晶界的Cu纳米带催化剂,并构建了气-液平衡扩散的电极结构,用于高效电催化二氧化碳还原制备乙烯(C2H4).以一种碱式碳酸铜(Cu2  相似文献   

18.
超临界二氧化碳二元体系相平衡性质的研究   总被引:10,自引:1,他引:9  
采用固定体积可视观察法测定了CO2+甲苯、CO2+环己烷、CO2+正丁醛、CO2+异丁醛、CO2+甲醇及CO2+乙醇二元体系的临界点性质,为超临界萃取和化学反应提供基础数据.在对二元体系相行为与单组分超临界相行为进行比较的基础上,对不同化学物质及不同配比的二元体系临界点与二氧化碳临界点之间的关系进行了讨论.  相似文献   

19.
以焙烧商用氢氧化锆(Zr(OH)4)得到的ZrO2为载体,通过沉积-沉淀法制备了ZnO-ZrO2催化剂,并在873 K下对该催化剂上CO2辅助的乙烷氧化脱氢反应(CO2-ODHE)的催化性能进行了评价。利用X射线衍射(XRD)、扫描电镜(SEM)、拉曼光谱(Raman)、高分辨透射电镜(HRTEM)、X射线光电子能谱(XPS)、CO2程序升温脱附(CO2-TPD)等技术对ZnO-ZrO2催化剂的表面物理化学性质和形貌进行了表征。结果表明,在5%ZnO-ZrO2催化剂上,ZnO掺入到了ZrO2的表面晶格之中,在催化剂表面产生了高度分散的ZnO物种和氧缺陷区域。5%ZnO-ZrO2催化剂可以选择性地剪裁乙烷C-H键,抑制C-C键的断裂,具备良好的催化性能。210μmol/(gcat·min)的C2H4形成率可以与贵金属和过渡金属碳...  相似文献   

20.
戴志锋  唐永铨  张飞  熊玉兵  王赛  孙琦  王亮  孟祥举  赵雷洪  肖丰收 《催化学报》2021,42(4):618-626,中插31-中插42
由于对化石燃料的高度依赖和二氧化碳(CO2)的过度排放,大气中CO2浓度从280 ppm上升到400 ppm左右,导致全球变暖和其他气候问题.在这种情况下,如何有效降低空气中的CO2浓度成为近年来最迫切的研究领域之一.另一方面,作为一种无毒、廉价且丰富的C1资源,CO2也可以转化为各种高附加值的工业产品,如甲酸、一氧化碳、甲烷、甲醇以及碳酸酯等.其中CO2与环氧化物转化生成环碳酸酯的环加成反应具有良好原子经济性,在近年来引起了人们的广泛关注.尽管已有多种多相和均相催化剂应用于该反应,但已有的催化剂特别是多相催化剂往往具有反应条件苛刻、催化剂易损失以及需要可溶性的共催化剂等缺点,从而限制了它们的进一步实际应用.因此,发展多相催化剂实现在温和和无共催化剂条件下的CO2环加成转化仍是一个挑战.本文通过自由基共聚的方法,以乙烯基功能化的金属卟啉和季膦盐作为单体制备了一种新型多孔有机聚合物(POP-PBnCl-TPPMg-x).考虑到金属卟啉和季膦盐常作为CO2环加成反应中的Lewis酸和Lewis碱活性中心,我们通过自由基共聚实现了这两种活性中心在分子水平上的结合与协同.所得的催化剂的组成和结构通过固体核磁、X射线光电子能谱、氮气吸附、扫描电子显微镜、透射式电子显微镜等手段进行了表征.值得指出的是,所得多相催化剂具有良好的CO2吸附与富集效应,十分有利于CO2的催化转化.我们以温和(40℃和1 atm CO2)并没有任何无可溶性共催化剂存在条件下,进行CO2与环氧化物的环加成作为探针反应,测试了不同催化剂的催化活性.以催化剂POP-PBnCl-TPPMg-12为例,其催化活性远超过单组分的POP-PBnCl和POP-TPPMg多相催化剂,也超过了二者机械混合的POP-PBnCl+POP-TPPMg-12催化剂,接近均相催化剂PBnCl+TPPMg-12的水平.这表明通过共聚合方法所得到的催化剂可以实现Lewis酸和Lewis碱两种活性中心的分子水平的结合.本文进一步研究了多相催化剂POP-PBnCl-TPPMg-12和均相催化剂PBnCl+TPPMg-12在低浓度CO2(15%N2 v/v,工业废气中CO2的浓度)条件下的催化活性,发现在该条件下多相催化剂表现出比均相催化剂更为优异的催化转化性能,且展现出良好的稳定性和循环使用性能,在循环使用5次后仍无明显的活性损失.该催化剂所具有的多相特点和优良的催化性能,因而有望成为实现工业CO2脱除并转化成高附加值产品的潜在高效催化剂.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号