首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
分子筛被用作工业催化剂时常需要过渡金属改性,镍是制备加氢/脱氢催化剂常用的过渡金属,本研究采用密度泛函理论研究镍改性的ZSM-12分子筛的结构和酸性。结果表明,分子筛的B酸质子可以被镍原子还原成氢分子,而Ni_2的团簇不能将B酸质子还原生成氢气分子。镍原子在分子筛内会被氧化,并形成Lewis酸性位,这会导致分子筛骨架铝的Lewis酸性变弱,镍改性后,分子筛吸附氢气的能力变强,被吸附的氢分子解离为氢原子,并带负电荷,不再具有B酸的功能。从计算的氨分子的吸附能来判断,由于吸附的氢会从镍原子得到电子,吸附的氢分子会增强镍原子的Lewis酸性。  相似文献   

2.
化学模拟唯铁氢化酶研究进展   总被引:2,自引:0,他引:2  
氢化酶(hydrogenase,简称H2ase)是一类存在于微生物体内的重要生物酶,它可以催化氢的氧化反应,也可以催化还原质子产生氢气.根据氢化酶活性中心金属的不同,可以大致分为三类:Fe-Fe氢化酶,Ni-Fe氢化酶和不含金属的氢化酶.本文主要介绍近年来唯铁(Fe-Fe)氢化酶的结构研究和化学模拟最新进展.  相似文献   

3.
程明伦  张雄飞  朱勇  王梅 《催化学报》2021,42(2):310-319
利用基于非贵金属的分子催化剂通过光驱动催化CO2还原生成CO是将太阳能储存为化学能和缓解CO2温室效应的有效途径之一,具有重要的科学意义和潜在的应用前景.已报道的非贵金属分子催化剂,大多数对于光驱动CO2还原表现出缓慢的催化反应速率和/或对CO产物的低选择性,反应常常伴随着质子还原产氢反应,只有很少几种非贵金属分子催化剂对光催化CO2还原生成CO表现出高催化反应速率(>100 h?1)和高选择性.研究表明,双核过渡金属配合物由于分子中邻近的两个金属中心的协同催化作用,对于CO2还原生成CO的催化活性明显高于相应的单核配合物.因此,具有两个邻近的金属离子的非贵金属双核配合物有望作为CO2选择性还原的高效分子催化剂.我们最近的研究发现,具有刚性、共轭亚苯基二硫桥结构的[FeFe]-氢化酶模拟物[(μ-bdt)Fe2(CO)6](1,bdt=苯-1,2-二巯基)能够高活性、高选择性地光化学还原CO2至CO,而与其类似的模拟物[(μ-edt)Fe2(CO)6](2,edt=乙烷-1,2-巯基)则不具有光催化还原CO2活性,表明铁铁氢化酶模拟物中硫-硫桥的结构是影响模拟物的催化性能的重要结构因素之一.可见光照射1/[Ru(bpy)3]2+/BIH(BIH=1,3-二甲基-2-苯基-2,3-二氢-1H-苯并[d]-咪唑)体系4.5 h,1催化生成CO的循环数(TON)为710,在初始1 h的转化率(TOF)为7.12 min^-1,CO的选择性达到97%,内量子效率为2.8%.有趣的是,向体系中加入TEOA时可以调节1的催化选择性,光化学反应能够在CO2还原产生CO和质子还原产生H2之间进行切换.此外,采用稳态荧光和瞬态吸收光谱研究了光催化体系中的电子转移,提出可能的光催化反应机理.该研究结果揭示了刚性硫-硫桥结构的氢化酶模拟物对光化学CO2还原至CO的特殊催化活性,拓展了铁铁氢化酶模拟物的催化多功能性.  相似文献   

4.
王妮  郑浩铨  张伟  曹睿 《催化学报》2018,39(2):228-244
由于传统化石能源的不可再生性,其储量日益减少.同时,传统化石能源的使用对环境产生了巨大影响,给人类社会带来了一系列问题,包括温室效应、酸雨等.因此,进入二十一世纪以后,人类面临着日益严峻的能源危机和环境问题,寻找清洁、高效的替代能源已经迫在眉睫.太阳能被认为是一种洁净的可再生能源.自然界通过光合作用将太阳能转化为化学能,在这一过程中,水被氧化产生氧气,同时释放出的电子和质子通过和二氧化碳作用生成碳水化合物.为了模拟这一过程,人工光合作用可以直接将电子和质子结合形成氢气.由此生成的氢气也被认为是洁净的可再生能源,因为在其燃烧过程中只产生水.因此,通过光致水分解析氢析氧的人工光合作用受到了越来越广泛的重视.水分解可以分为两个独立的半反应,即水的氧化析氧和水的还原析氢.水的氧化无论在热力学还是动力学方面,都存在着非常大的阻碍.在热力学上,两分子的水氧化生成一分子氧气需要提供很多能量(ΔE=1.23 V vs NHE).在动力学上,由于涉及到四个氢原子和两个氧原子的重组,并且涉及到氧氧键形成并释放出一分子氧气,因此水氧化是一个非常缓慢的过程.在自然界,水的氧化主要发生在光合作用中,在绿色植物的叶绿体中完成.通过对光合作用的研究,科学家们发现氧气的产生由光系统Ⅱ(PSII)中的释氧中心来完成.释氧中心是一个钙锰簇合物,由四个锰和一个钙组成(Mn_4CaO_x).自然界水分解产生氧气的过程给了我们很大启示,对设计和研究高效稳定的水氧化催化剂具有一定的指导意义.目前水氧化催化剂主要有两大类.第一类是基于材料的水氧化催化剂.该类催化剂的催化效率高,过电势小,但是对水氧化催化过程的机理缺乏深入研究.第二类是基于金属配合物的分子催化剂.相比基于材料的催化剂,分子催化剂具有以下特点:(1)分子催化剂的结构可以通过实验手段表征清楚;(2)可以结合光谱对水氧化的机理进行深入研究,可以对催化过程中间体进行表征;(3)催化剂的结构可以从分子水平上进行修饰,因此可以更好地研究催化效率与结构之间的关系,为设计高效、稳定的催化剂提供必要信息;(4)比较容易组装成分子器件从而应用到实际的水氧化装置中;(5)通过实验与理论的结合,对氧氧成键提出新的认识与理解.近几年来,一些单核的金属配合物逐渐被发现可以高效、稳定地催化水氧化.研究表明,一些基于钌和铱的催化剂具有良好的催化活性,但由于金属钌和铱储量少、价格昂贵等因素,限制了该类催化剂的大量使用.由于第一过渡系金属元素具有储量丰富、安全无毒、廉价易得等优势,第一过渡周期金属化合物逐渐成为科学家们研究的热点.近几年来,基于第一过渡系金属的水氧化催化剂已经有大量报道.本文主要总结了近几年来基于第一过渡系金属的单核水氧化分子催化剂.通过对催化机理进行深入的讨论,特别是对氧氧成键的总结,本文将对设计合成结构新颖、具有高催化效率和良好稳定性的水氧化分子催化剂提供理论依据.  相似文献   

5.
采用洁净、可持续的替代能源以解决化石燃料的过度消耗及因其燃烧而导致的日益加剧的全球变暖问题已经成为当务之急.其中,如何实现在大气含氧条件下的析氢反应成为需要攻克的重大挑战.氧还原在热力学上比质子还原更容易进行,并且氧气部分还原时通常产生活性氧物种,致使催化剂失活.因此,需要开发在氧气存在情况下能够有效还原质子的催化剂.本文设计了一种四苯基铁卟啉分子,该分子通过三氮唑将四个二茂铁连接在苯基邻位,并证明该催化剂能够在有氧气的情况下高效还原质子,产生氢气.作为铁卟啉类化合物催化质子还原的活性物种,Fe(0)发生质子还原比发生O2还原的动力学速率快得多,从而为氧气存在下的选择性质子还原奠定了基础.  相似文献   

6.
钱东金  刘安 《化学进展》2009,21(10):2009-2016
氢气作为一种可再生和零排放的清洁能源,在全球能源和环境双重危机的今天倍受各国政府、企业和研究人员的关注。自然界中存在于藻类和细菌中的氢酶是高效的催化氢气氧化和质子还原的氧化还原酶,在生物产氢和能量转换过程中发挥着重要的作用。近年来涌现出了许多基于氢酶及其模型化合物的仿生产氢和生物燃料电池方面的研究工作。本文综述了氢酶及其分子聚集体薄膜在电极表面的组装技术,如吸附法、自组装法、Langmuir-Blodgett法和溶胶-凝胶法等,并讨论了分子聚集体薄膜中氢酶的结构、生物活性、电化学性质及其在催化产氢方面的应用。  相似文献   

7.
尹传奇  张海宁 《分子催化》2002,16(4):247-252
在氢气压力下,钌配合物[^MeCnRuCl(dppe)](O3SCF3)与AgO3SC3在CH2Cl2中反应生成分子氢配合物[^MeCnRu(H2)(dppe)](O3SCF3)2,该分子氢配合物具有催化烯烃离子氢化的活性。原位高压核磁共振研究显示,这种催化离子氢化反应可能是由分子氢配合物向烯烃转移氢质子形成碳正离子引起的。  相似文献   

8.
电催化水分解是一种高效制备清洁氢气能源的有效方法. 开发高效、稳定、廉价、双功能的电催化剂用于水的氧化与还原反应一直以来都是具有挑战的课题. 在这篇论文中,作者报道了一种生长在碳布上高活性的硒化镍微球. 该催化剂通过对同时包含镍和硒元素的亚硒酸镍配合物进行电解制备. 由于前驱分子同时含有两种有效元素,制备得到的硒化镍具有很好的形貌和元素分步均一性. 制备得到的NiSe-EA/CC电极能够双功能催化水的氧化与还原. 在154 mV析氢过电势下能达到10 mA·cm-2的催化电流. 同时,在250 mV析氧过电势下能达到20 mA·cm-2电催化电流. 用该电极材料同时作为阴极和阳极制备的全电解水电解池能在1.53 V的电压下实现10 mA·cm-2的稳定电解电流.  相似文献   

9.
张学鹏  王红艳  郑浩铨  张伟  曹睿 《催化学报》2021,42(8):1253-1268
随着化石燃料的不断消耗和生存环境的日益恶化,可再生、清洁且环境友好的新能源逐渐受到广泛关注与利用.太阳能作为一种洁净的可再生能源,在自然界中,植物可以通过光合作用将太阳能转换成化学能.在该过程中,水分子在光系统II中被氧化而释放出氧气,伴随生成的质子和电子进一步将二氧化碳转化为蕴含生物质能的碳水化合物.在光系统II中,叶绿素P680被光照激发生成阳离子自由基P680·+,其具有很强的氧化能力,可以从附近的析氧中心中夺取电子.析氧中心通过这一过程失去4个电子,可以将两分子水氧化生成一分子氧气和4个质子.作为水裂解的半反应之一,水氧化在热力学方面需要很多能量来断裂4个O-H键(ΔE=1.23 V vs.NHE),在动力学方面涉及4个氢原子与2个氧原子的重组以及氧气的释放,因而水氧化析氧是一个非常缓慢的过程,如何高效稳定地催化水氧化一直是人们研究的热点和难点.研究发现,自然界中存在的析氧中心为Mn4CaO(x)的钙锰簇合物,在水氧化过程中生成的Mn=O物种可以被游离的水分子亲核进攻形成O-O键,也可以与桥连μ-O(H)反应生成O-O键.通过对析氧中心持续的研究,在过去几十年中设计合成了一系列具有水氧化催化活性的基于金属配合物的分子催化剂.分子催化剂催化水氧化一般主要分为金属-氧物种的演化过程以及O-O成键过程.通常,金属-氧物种可以通过失电子或质子耦合的失电子过程逐步生成高价态的金属-氧物种,其引发的O-O成键过程通常是水氧化催化循环的决速步骤.基于之前的研究成果,目前主要报道了五种不同的O-O成键机理:(1)水亲核进攻金属-氧物种的WNA机理,(2)金属-氧自由基耦合的I2M机理,(3)金属-羟基自由基耦合的HC机理,(4)分子内进攻桥连氧的IOC机理以及(5)氧化还原异构的RI机理.本文综述了过去几十年水氧化分子催化剂的发展,总结了贵金属钌和铱配合物到第一过渡金属锰、铁、钴、镍和铜配合物催化水氧化过程中金属-氧物种的生成与演化,重点阐述了引发O-O成键过程的高价态金属-氧物种的种类及其不同的O-O成键机理.重点总结了O-O成键中WNA机理与I2M机理的异同,并阐述了催化剂设计对WNA与I2M机理选择性的影响.通过对金属-氧物种种类和O-O成键机理的总结,将有助于进一步设计合成高效稳定的水氧化分子催化剂.  相似文献   

10.
利用可再生能源产生的电能电解水制取氢气,被认为是下一代清洁能源的最佳选择之一。然而,通过电解水可持续的产生氢气需要高活性的催化剂来使得反应有效地进行。基于类石墨烯二维材料的析氢反应电催化剂展现出巨大的潜力,因而备受关注。本文主要结合我们课题组近期在析氢反应电催化剂方面的研究,介绍了类石墨烯二维材料的析氢反应电催化剂的研究进展,主要包括过渡金属二硫族化合物、前过渡金属碳化物(MXenes)以及硼单层纳米片等。最后总结和展望了析氢反应电催化剂所面临的挑战与未来发展方向。  相似文献   

11.
氢气因其能量密度高、零排放和可再生的特点被广泛认为是最有前景的能源.电解水是一种产生高纯氢气的有效途径.目前,高性能的促进水电解的催化剂主要是贵金属材料,例如贵金属铂.然而,高成本大大阻碍了贵金属材料在电催化水分解中的广泛应用.因此,我们致力于研究具有高活性的非贵金属催化剂.因为电催化水分解析氢反应更容易发生在质子浓度高的条件下,所以研究碱性条件下催化析氢比研究酸性条件下催化析氢更具挑战性.在工业应用中,酸性电解质溶液对仪器设备的腐蚀性比碱性溶液更大,因此研究应用在碱性溶液中的析氢催化剂更有发展前景.过渡金属磷化物被广泛地研究作为高性能析氢电催化剂,然而过渡金属磷化物作为析氢催化剂的稳定性通常不是很好.我们通过钼元素的引入,提高过渡金属磷化物作为析氢催化剂的稳定性.电化学催化效率同样受到材料形貌和导电性的影响.大的比表面积有利于暴露更多的活性位点,使活性位点与电解质溶液的接触更加充分,有利于催化剂和溶液之间的传质.据报道,金属磷化物具有良好的导电性是由于磷化物中存在金属-金属键.所以合成具有大比表面积形貌的过渡金属磷化物材料能够满足析氢电催化剂对比表面积和导电性的两个需求.界面效应是调节催化剂性能的一个有效方法.析氢催化剂常常存在吸附质子能力过强或过弱、稳定性不好等问题.这些问题可以通过界面效应来解决.本文通过形成磷化估和钼钴氧的界面来调节改善磷化钴表面原来的电子密度,以达到理想的氢吸附自由能;同时此界面效应还能起到稳定催化剂性能的作用.本文首先采用水热法合成了红毛丹状钼钴氧空心微米小球前驱体.在钼酸根离子的引导下,利用奥斯特瓦尔德熟化原理一步实现了红毛丹状空心结构.前驱体再以次亚磷酸钠为磷源进行气相磷化,得到产物红毛丹状磷化钴@钼钴氧空心微米小球.通过扫描电镜和透射电镜对其红毛丹状空心结构进行了表征.利用X射线衍射和X射线光电子能谱等手段表征了材料的物相组成和价态分布.电化学测试均使用电化学工作站完成.该材料在碱性电解质溶液中展现了极好的电化学催化析氢性能,在电流密度为10 mA cm^-2时对应的析氢过电位仅为62 mV.在1 MKOH溶液中10 mA cm^-2电流密度下测试55 h,过电位仅增大约17 mV,显示了非常强的碱性析氢稳定性.得益于磷化钴和钼钴氧之间的界面效应,以及特殊的三维空心结构,红毛丹状磷化钴@钼钴氧空心微米小球表现出优异的析氢催化性能和稳定性.  相似文献   

12.
可见光驱动的光催化产氢同时诱导低能核反应嬗变钾为钙   总被引:1,自引:1,他引:0  
吕功煊  张文妍 《分子催化》2017,31(5):401-410
报道了曙红、氯铂酸钾、氧化石墨烯和三乙醇胺混合物悬浮体系在可见光照射条件下将钾嬗变为钙的现象.在大于440 nm光照的条件下,反应体系可以产生大量的氢气,同时体系中的部分钾原子转变为钙元子.在反应过程中,悬浮混合物中的钙元素浓度持续增加,同时伴随发生质子的还原为氢和部分质子反应为氦3和氦4的反应.分析表明,在自然界的某种环境和条件下,钙有可能通过在温和条件下的低能核反应(LENR)经历钾的嬗变生成,这个过程可能与光催化产氢过程中生成的负氢有关.  相似文献   

13.
李孟阳  刘翠波  黄义  韩舒艳  张兵 《催化学报》2021,42(11):1983-1991
氮杂环的催化氢化在有机合成、药物研发、石油化工等领域有着重要应用.尽管发展了一系列均相和非均相催化加氢体系,但由于通常使用易燃易爆的氢气或价格昂贵且毒性较高的试剂(如:水合肼和硼氢化钠)为氢源,给安全生产及生态环境带来了严重的问题.此外,由于动力学同位素效应,氘代药物具有重要应用.氮杂环结构作为生物医药的构筑单元与关键中间体,现有的策略由于没有合适的氘源难以用于氘代氮杂环化合物的合成.因此,急需开发一种基于非贵金属催化剂和安全易得氢(氘)源的氮杂环催化氢(氘)化策略.水相中的电化学氢化可利用水电解原位产生的活性氢替代传统的氢气裂解实现有机氢化产物的合成,已成为一种理想氢化策略,被广泛应用于二氧化碳还原、硝酸根还原和生物质氢解等.本课题组前期研究已经实现了以氘水为氘源的氘代分子的高效电化学合成(Angew.Chem.Int.Ed.,2020,59,18527–18531;Angew.Chem.Int.Ed.,2020,59,21170–21175;CCS Chem.,2021,3,507–515).然而,要开发一种电化学的杂环氢化方法,一方面要克服氮杂环化合物对催化剂的毒化,另一方面要在电极表面产生大量的活性氢.因此,开发具有较好的水离解性能的非贵金属电极材料是实现氮杂芳烃电化学氢化和氘代的关键.基于上述要求,MoNi4(目前用于碱性电催化水分解制氢的活性较高的非贵金属材料)成为理想的电极材料.本文以喹喔啉(1,2,3,4-四氢喹喔啉骨架作为重要的结构单元存在于许多生物活性化合物中)作为模板底物,设计并制备了三维自支撑的MoNi4多孔纳米片为双功能电极,以水和氘水为氢源和氘源,实现了喹喔啉及其他氮杂环分子的氢化与氢化,同时实现了四氢喹喔啉的电化学氧化脱氢.制备了MoNi4纳米片阵列,利用扫描电子显微镜、透射电子显微镜、X射线衍射和X光电子能谱等手段进行表征,评估了其在碱性电解液中用于喹喔啉电化学转移氢化的性能.结果表明,MoNi4电极加速了动力学缓慢的Volmer步骤,在仅50 mV的过电势下以80%的法拉第效率实现了喹喔啉的电化学氢化.电子顺磁共振等证实水电解生成了H*,并与喹喔啉自由基阴离子偶联实现喹喔啉的氢化.同时,该电化学转移氢化方法可很好地应用于一系列喹喔啉衍生物和其他氮杂芳烃化合物.克级合成体现了该电化学转移氢化方法的潜在应用性.原位拉曼实验结果表明,在MoNi4表面形成的NiOOH是实现1,2,3,4-四氢喹喔啉氧化脱氢的重要物种.此外,以D2O代替H2O,可以较好的收率和高达99%的氘化率实现氘代氮杂环的合成.与传统的氮杂环氢化方法相比,本文的电化学转移氢化策略具有绿色、温和、高效的特点,同时拓宽了电化学氢化在合成化学中的应用.  相似文献   

14.
酶-光偶联催化系统(EPCS)集成了半导体的光吸收能力和酶的高活性/特异性,可模拟自然界光合作用实现太阳能驱动的有用化学品合成.作为EPCS中的“能量货币”,辅因子(如NAD(P)+和NAD(P)H)参与了约80%的酶促氧化还原反应,且在酶-光间充当物质/能量交换的枢纽.然而, EPCS涉及光催化和酶催化反应,涉及分子、电子和质子传递过程,属于典型的复杂多相反应,导致其光-化学转化效率与理论值差距较大.本文从微观尺度对EPCS中分子-电子-质子传递过程进行了理解和剖析,系统介绍了自然界光合作用和EPCS中的“新三传”(即质量传递、热量传递和动量传递)现象.与传统化工领域通过强化宏观尺度上“三传”提升单元操作过程效率的方法类似,本文总结并提出了通过协调优化“新三传”(即分子传递、电子传递和质子传递)来强化EPCS中物质-能量耦合关系,进而提升光-化学转化效率的新策略.其中,分子传递主要包括电子供体分子从反应液向催化剂传递以及辅因子分子在光催化模块和酶催化模块间穿梭;电子传递主要包括光生电子从其生成位点到光催化剂表面进而到电子媒介的传递;质子传递主要包括质子从溶液或催化剂表面向电子媒介的传...  相似文献   

15.
张凌峰  胡忠攀  刘歆颖  袁忠勇 《化学进展》2016,28(10):1474-1488
利用太阳能光催化水解制氢是获得清洁、廉价、无污染的氢气最有前景的一种方式。这个过程主要包括三个步骤:太阳光的捕获,电荷分离与转移,催化质子还原产生氢气。其中,大量的研究工作主要集中在前两步,对于第三步的研究则相对较少。然而,共催化剂的引入可以有效促进光催化活性并提高氢气产生速率。共催化剂主要分为贵金属共催化剂和非贵金属共催化剂,其中,贵金属共催化剂有着较高的活性,但是其价格及来源限制了其实际应用,因此开发廉价高效的非贵金属共催化剂非常重要。本文对TiO2基光解水析氢的非贵金属共催化剂(过渡金属单质及其复合物以及非金属碳基材料)进行了总结,详细讨论了不同共催化剂的作用机理,并对共催化剂的发展方向进行了合理展望。  相似文献   

16.
报道了一种利用价廉易得的邻苯二胺衍生物与α-酮酸酯经环化/钌催化的亚胺和酰胺氢化串联反应一锅法制备1,2,3,4-四氢喹喔啉的方法. 该方法使用原位生成的Ru(acac)3/Triphos配合物和HBF4共催化剂组成的催化体系, 高效制备了一系列2-取代的1,2,3,4-四氢喹喔啉, 官能团耐受性良好. 在较低的氢气压力和不使用助催化剂的条件下, 反应可停留在只生成3,4-二氢喹喔啉酮产物阶段. 反应机理研究表明, 钌催化剂仅用于还原亚胺和酰胺部分, 而布朗斯台德酸助催化剂的选择对于酰胺部分去氧氢化至关重要. 研究表明, 布朗斯台德酸助催化剂通过活化酰胺部分参与催化过程.  相似文献   

17.
单铁氢化酶的活性中心能在自然环境条件下催化异裂氢分子并且选择性还原特定底物。自从20世纪90年代,其第一次被分离出来后,科学家一直在努力模拟单铁氢化酶活性中心的结构及功能,期望通过仿生手段,实现类似自然界温和利用氢气的功能,来解决当今氢能在使用中贵金属催化剂等问题。仿生单铁氢化酶活性中心模型化合物被不断合成研究,促进了对酶活性中心几何结构和电子特性的认知。红外光谱特征、催化禁阻特性、质子化特性、密度泛函分析(DFT)以及催化机理探索等为未来研究提供了理论基础。本篇综述主要总结了近些年单铁氢化酶的分离表征、晶体结构、活性中心的仿生模拟、催化机理探索方面研究进展。  相似文献   

18.
将CO2还原成含碳能源或化学品,不仅能够缓解温室气体造成的危害,也是实现“双碳”目标的有效途径.为了有效避免竞争性的产氢反应和克服CO2的惰性,需要合适的催化剂提高还原产物CO2的选择性,并促进反应的快速进行.由于以过渡金属配合物为主的分子型催化剂具备已知的清晰结构,且具有丰富多变的氧化还原性质,有助于进行结构优化、分离催化中间体和机理分析,分子型CO2还原催化剂目前受到了广泛关注.另一方面,利用地壳储量丰富的非贵金属替代珍贵的4d和5d过渡金属来制备分子催化剂有利于降低制备成本,实现大规模应用.因此,设计和优化非贵金属分子催化剂用于光催化CO2还原是非常有必要的.目前主要的优化方法包括调控电子效应、调控配体共轭程度、设置质子传递中心和设置库仑相互作用等.其中,通过添加给电子/吸电子取代基团来调节配体骨架的电子性质,可以有效调节金属中心的电子密度,从而改善分子催化剂的氧化还原性质.然而,采取该策略可能会导致催化活性和过电位间的此消彼长,限制了催化剂的提升空间.因此,电子效应调控...  相似文献   

19.
采用密度泛函理论(DFT)对锰配合物催化二氧化碳加氢生成甲酸的反应进行了理论研究. 整个催化循环主要包括氢气活化和二氧化碳氢化2个阶段. 计算结果表明, 甲酸的参与明显降低了氢气活化的反应能垒; 二氧化碳的氢化过程遵循外层机理并且氢转移是分步进行的, 决速步骤为氢负离子的转移过程, 自由能垒为21.0 kJ/mol. 对配合物中硫原子上的取代基R进行了调变, 研究结果表明, 当R为吸电子基团时能降低氢气裂解和二氧化碳氢化过程中质子转移的能垒, 而当R为推电子基团时有利于氢负离子的转移,当R=CF3时整个反应的能量跨度(80.4 kJ/mol)最小.  相似文献   

20.
氢化酶仿生化学是当前有机金属化学领域研究的前沿课题,其主要内容为针对氢化酶的活性中心结构和功能进行化学模拟研究.自然界中已经发现的氢化酶有三种,其中[NiFe]氢化酶、[FeFe]氢化酶研究较多.单铁氢化酶发现于1990年,是产甲烷杆菌在厌氧和镍缺乏的条件下合成的.区别于其他两种氢化酶,其活性中心不含Fe-S簇,且仅含有一个Fe原子,并且仅能在底物存在的情况下,催化异裂氢分子并选择性还原特定底物,为产甲烷杆菌代谢提供能量.研究单铁氢化酶的结构和功能,模拟其活化氢、利用氢的过程,对于探索清洁能源的利用和开发新的非贵金属催化剂具有重要意义.本文以单铁氢化酶(Hmd)结构和功能模拟为导向,针对单铁氢化酶一级配位结构,设计合成了两个新模型化合物.通过IR, NMR, X射线单晶衍射等手段表征分析了模型化合物的性质并确认其结构.探索了其质子化反应特性、电催化还原质子制氢的特性.为了进一步模拟Hmd催化裂解氢气、完成氢转移的功能,以所合成模型物为催化剂实现了在常温常压下,以乙醇作为质子源的催化转移氢化过程.新单铁模型配合物Fe(CO)2PR3(NN)(R = Cy (3), Ph (4), NN,邻苯二胺二价阴离子配体)由NN二齿配体与前体化合物Fe(CO)3I2PR3进行配体取代反应合成.模型化合物活性中心为一个二价铁原子,拥有两个处于cis-位置的羰基配体,一个邻苯二胺双齿配体(两个氮原子进行配位)以及一个有机膦配体.通过红外光谱表征所合成的具有不饱和五配位结构化合物的光谱性质,可以得到配合物Fe(CO)2PCy3(NN)的羰基红外特征谱峰为1974,1919 cm–1,配合物Fe(CO)2PPh3(NN)的红外特征谱峰在1985和1929 cm–1处.通过单晶X射线衍射表征确认了两个化合物结构,并获取晶体学数据.经研究发现, Fe(CO)2PR3(NN)能够发生酸碱调控下可逆的质子化/脱质子化过程.基于红外光谱和密度泛函理论计算推断邻苯二胺阴离子配体可以作为内部碱基.在酸性条件下, Fe(CO)2PR3(NN)分子内部碱基氮原子通过质子化反应结合一个质子,生成Fe(CO)2PR3(NN)·H+.加入碱之后,重新生成起始化合物Fe(CO)2PR3(NN).表明N原子作为内部碱基,具有结合和转移质子的能力.该性质与Hmd中半胱氨酸硫配体具有一致性.通过循环伏安曲线研究了配合物Fe(CO)2PCy3(NN)和Fe(CO)2PPh3(NN)的电化学性质.其中配合物Fe(CO)2PCy3(NN)和Fe(CO)2PPh3(NN)均具有两个不可逆的还原峰和氧化峰.在电化学制氢研究中,配合物Fe(CO)2PPh3(NN)的还原峰电流随着乙酸的加入增幅较大,展现出较强的催化质子还原的性质.通过与其他单铁模型配合物对比,可以推断第一个还原峰归属为配合物由FeI转化为FeI,第二个可逆还原峰归属为配合物由FeI转化为Fe0.同时,配合物Fe(CO)2PPh3(NN)第一个还原峰向高电位移动,该现象与双铁模型化合物的电化学性质较为一致.进一步研究发现,模型化合物具有催化转移氢化的活性.在常温下,乙醇溶剂中, Fe(CO)2PCy3(NN)能够催化对苯醌还原转化为对苯二酚,其中对苯醌的转化率达到89%,对苯二酚的产率达到40%.结合实验数据以及文献资料分析,认为乙醇在催化氢化中可以作为质子源,并且提出了催化转移氢化反应过程的机理.认为催化氢化过程中形成了-Fe-H-C-O-H-N-六元环,通过分子间相互作用完成了氢原子转移过程.该研究结论对单铁氢化酶活性中心模型化合物在催化氢化反应中的应用具有一定的参考价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号