首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   1篇
化学   1篇
物理学   1篇
  2021年   1篇
  2012年   1篇
排序方式: 共有2条查询结果,搜索用时 29 毫秒
1
1.
李孟阳  刘翠波  黄义  韩舒艳  张兵 《催化学报》2021,42(11):1983-1991
氮杂环的催化氢化在有机合成、药物研发、石油化工等领域有着重要应用.尽管发展了一系列均相和非均相催化加氢体系,但由于通常使用易燃易爆的氢气或价格昂贵且毒性较高的试剂(如:水合肼和硼氢化钠)为氢源,给安全生产及生态环境带来了严重的问题.此外,由于动力学同位素效应,氘代药物具有重要应用.氮杂环结构作为生物医药的构筑单元与关键中间体,现有的策略由于没有合适的氘源难以用于氘代氮杂环化合物的合成.因此,急需开发一种基于非贵金属催化剂和安全易得氢(氘)源的氮杂环催化氢(氘)化策略.水相中的电化学氢化可利用水电解原位产生的活性氢替代传统的氢气裂解实现有机氢化产物的合成,已成为一种理想氢化策略,被广泛应用于二氧化碳还原、硝酸根还原和生物质氢解等.本课题组前期研究已经实现了以氘水为氘源的氘代分子的高效电化学合成(Angew.Chem.Int.Ed.,2020,59,18527–18531;Angew.Chem.Int.Ed.,2020,59,21170–21175;CCS Chem.,2021,3,507–515).然而,要开发一种电化学的杂环氢化方法,一方面要克服氮杂环化合物对催化剂的毒化,另一方面要在电极表面产生大量的活性氢.因此,开发具有较好的水离解性能的非贵金属电极材料是实现氮杂芳烃电化学氢化和氘代的关键.基于上述要求,MoNi4(目前用于碱性电催化水分解制氢的活性较高的非贵金属材料)成为理想的电极材料.本文以喹喔啉(1,2,3,4-四氢喹喔啉骨架作为重要的结构单元存在于许多生物活性化合物中)作为模板底物,设计并制备了三维自支撑的MoNi4多孔纳米片为双功能电极,以水和氘水为氢源和氘源,实现了喹喔啉及其他氮杂环分子的氢化与氢化,同时实现了四氢喹喔啉的电化学氧化脱氢.制备了MoNi4纳米片阵列,利用扫描电子显微镜、透射电子显微镜、X射线衍射和X光电子能谱等手段进行表征,评估了其在碱性电解液中用于喹喔啉电化学转移氢化的性能.结果表明,MoNi4电极加速了动力学缓慢的Volmer步骤,在仅50 mV的过电势下以80%的法拉第效率实现了喹喔啉的电化学氢化.电子顺磁共振等证实水电解生成了H*,并与喹喔啉自由基阴离子偶联实现喹喔啉的氢化.同时,该电化学转移氢化方法可很好地应用于一系列喹喔啉衍生物和其他氮杂芳烃化合物.克级合成体现了该电化学转移氢化方法的潜在应用性.原位拉曼实验结果表明,在MoNi4表面形成的NiOOH是实现1,2,3,4-四氢喹喔啉氧化脱氢的重要物种.此外,以D2O代替H2O,可以较好的收率和高达99%的氘化率实现氘代氮杂环的合成.与传统的氮杂环氢化方法相比,本文的电化学转移氢化策略具有绿色、温和、高效的特点,同时拓宽了电化学氢化在合成化学中的应用.  相似文献   
2.
针对半导体激光器的发光特点,设计了半导体激光器的光束整形系统。首先采用柱透镜准直和偏转沿Y轴发散的光束;然后再采用望远系统对X轴发散的光束进行准直和扩束;最后采用弯月透镜对发射光束压缩,实现半导体激光器的光束整形,降低光束发散角,提高光束质量。利用ZEMAX软件模拟系统,结果表明,整形后输出光束沿X轴和Y轴的发散角变为4.922mrad,输出光斑直径为1.2707mm,整形系统总长度为65.6618mm,各元件的最大直径为20.52mm,输出光束质量和系统结构都优于同类产品。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号