首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
研究了钌-双膦-二胺配合物催化剂RuC1_2[(S)-P-Phos]-[(S)-DAIPEN][P-Phos:2,2',6,6'-四甲氧基-4,4'-双(二苯基膦基)-3,3'.二吡啶,DA肫N:1,1.二(4.甲氧苯基).2.异丙基.1,2.乙二胺]催化芳香酮不对称加氢反应的性能,考察了不同的碱、叔丁醇钾浓度、反应溶剂、底物/催化剂摩尔比等因素对反应活性和对映选择性的影响.在苯乙酮、叔丁醇钾、催化剂的摩尔比为1000:20:1,氢气压力为2 MPa,反应温度为30℃时,苯乙酮的转化率和α-苯乙醇的对映选择性(ee)分别达到了100%和88.5%,2'-溴苯乙醇的ee值町达97.1%.  相似文献   

2.
顾庆  江玲霞  王琼  伍新燕 《有机化学》2008,28(8):1416-1422
以环己酮与4-硝基苯甲醛直接不对称Aldol缩合为模型反应, 对一系列具有C2对称性的有机小分子催化剂进行了考察, 其中(2S,5S)-吡咯烷-2,5-二羧酸的不对称催化效果最好. 在10 ℃下, 以DMSO为溶剂, 30%摩尔分数催化剂用量, 研究了多个取代芳香醛和环己酮的不对称催化Aldol反应, 对映选择性为87%~99% ee.  相似文献   

3.
以环己酮与4-硝基苯甲醛直接不对称Aldol缩合为模型反应,对一系列具有C2对称性的有机小分子催化剂进行了考察,其中(2S,5S)-吡咯烷-2,5-二羧酸的不对称催化效果最好.在10℃下,以DMSO为溶剂,30%摩尔分数催化剂用量,研究了多个取代芳香醛和环己酮的不对称催化Aldol反应,对映选择性为87%~99?.  相似文献   

4.
研究了钌-双膦-二胺配合物催化剂RuCl2[(S)-P-Phos]-[(S)-DAIPEN] [P-Phos: 2,2',6,6'-四甲氧基-4,4'-双(二苯基膦基)-3,3'-二吡啶, DAIPEN: 1,1-二(4-甲氧苯基)-2-异丙基-1,2-乙二胺]催化芳香酮不对称加氢反应的性能, 考察了不同的碱、叔丁醇钾浓度、反应溶剂、底物/催化剂摩尔比等因素对反应活性和对映选择性的影响. 在苯乙酮、叔丁醇钾、催化剂的摩尔比为1000:20:1, 氢气压力为2 MPa, 反应温度为30 ℃时, 苯乙酮的转化率和α-苯乙醇的对映选择性(ee)分别达到了100%和88.5%, 2'-溴苯乙醇的ee 值可达97.1%.  相似文献   

5.
彭丹  阳年发 《分子催化》2015,29(2):118-125
通过维蒂希反应合成了(S)-3-乙烯基-2,2'-甲氧甲氧基-1,1'-联萘.将单体(S)-3-乙烯基-2,2'-甲氧甲氧基-1,1'-联萘用偶氮二异丁腈作引发剂进行自由基聚合得到了聚[(S)-3-乙烯基-2,2'-二甲氧基甲氧基-1,1'-联萘].该聚合物上的MOM保护基通过酸脱除获得手性螺旋聚合物聚[(S)-3-乙烯基-2,2'-二羟基-1,1'-联萘].将手性螺旋聚合物聚[(S)-3-乙烯基-2,2'-二羟基-1,1'-联萘]与Ti(O-i-Pr)4形成的配合物应用于三乙基铝与醛的不对称加成反应中,获得了较好的对映选择性,ee值最高为85%.更重要的是,这种聚合物还可以被回收利用多次且催化活性没有明显降低.  相似文献   

6.
将Takemoto(硫)脲衍生物用于催化靛红与乙酰乙酸酯的不对称羟醛反应(Aldol).在0.1 mmol底物用量条件下,筛选出最佳催化剂体系为:5%(摩尔分数)催化剂N-[3, 5-双(三氟甲基)苯基]-N′-[(1S, 2S)-2-(二甲氨基)环己基]脲1b, 1 mL甲基叔丁基醚为溶剂, 0℃条件下反应.以76%~87%的产率和最高达87%的对映选择性获得了手性δ-(2-羟基吲哚-3基)-δ-羟基-β-酮酸酯.  相似文献   

7.
以2,2′-二羟-1,1′-联二萘-3,3′-二羧酸为原料,合成了3个具有轴手性的联二萘酚酰胺类衍生物(1a~1c),将其作为催化剂应用到四氢吡喃酮与醛的不对称直接Aldol反应中,考察其催化活性。研究结果表明: 15 mmol% 1c为催化剂,CH2Cl2为溶剂,于0 ℃反应28 h,四氢吡喃酮与醛能有效进行不对称直接Aldol反应,获得较好的收率(最高91%)和较高的对映选择性(最高95% ee)。  相似文献   

8.
合成了一种基于联萘酚的新型手性单体,(S)-3-(二苯羟甲基)-3'-3-乙烯基-2,2'-二羟基-1,1'-联萘(5).通过由偶氮异丁腈(AIBN)引发的自由基聚合得到聚[(S)-3-(二苯羟甲基)-3'-3-乙烯基-2,2'-二羟基-1,1'-联萘](P-5),旋光、紫外-可见光谱、圆二色谱表征结果表明P-5以单手性螺旋结构的形式存在于溶液中.考察了螺旋齐聚物P-5在催化苯甲醛与Danishefsky双烯烃的杂-Diels-Alder(HDA)反应中的不对称诱导作用,所得加和产物的ee值达71%,P-5可以被回收重复使用而保持催化活性不变.  相似文献   

9.
研究了用手性修饰剂(1S,2S)-(-)-1,2-二苯基乙二胺修饰的负载型钌催化剂(Ru/γ-Al2O3)催化芳香酮的不对称加氢反应,在KOH的异丙醇溶液中,10~20℃,pH2=5 MPa条件下,芳香酮及其衍生物加氢产物的ee值达79.5%~85.0%,2-乙酰基噻吩加氢产物的ee值可达86.2%.此催化剂制备简单,容易与产物分离,重复使用4次,对映选择性基本保持不变.  相似文献   

10.
研究了用手性修饰剂(1S,2S)-(-)-1,2-二苯基乙二胺修饰的负载型钌催化剂(Ru/γ-Al2O3)催化芳香酮的不对称加氢反应,在KOH的异丙醇溶液中,10~20℃,=5MPa条件下,芳香酮及其衍生物加氢产物的ee值达79.5%~85.0%,2-乙酰基噻吩加氢产物的ee值可达86.2%.此催化剂制备简单,容易与产物分离,重复使用4次,对映选择性基本保持不变.pH2  相似文献   

11.
Chiral Al/Zn heterobimetallic complexes are effective catalysts for the direct highly enantioselective aldol reaction of acetophenones with aromatic aldehydes. The Al site in the complex acts as a Lewis acid to activate aldehyde, whereas ethylzinc alkoxide plays a role of a Brønsted base to form a reactive zinc enolate with acetophenone. Distinct nature of two different metals contributes to the efficient direct asymmetric aldol reaction.  相似文献   

12.
This review focuses on a new concept in catalytic asymmetric reactions that was first realized for the use of heterobimetallic complexes. As these heterobimetallic complexes function as both a Brønsted base and as a Lewis acid, just like an enzyme, they make possible a variety of efficient catalytic asymmetric reactions. This heterobimetallic concept should prove to be applicable to a variety of new asymmetric catalyses. The first part of this review describes the development of rare-earth–alkali metal complexes such as LnM3tris(binaphthoxide) complexes (LnMB, Ln = rare-earth metal, M = alkali metal), which are readily prepared from the corresponding rare-earth trichlorides or rare-earth isopropoxides, and their application to catalytic asymmetric synthesis. By using a catalytic amount of LnMB complexes several asymmetric reactions proceed efficiently to give the corresponding desired products in up to 98% ee: LnLB-catalyzed asymmetric nitroaldol reactions (L = Li), LnSB-catalyzed asymmetric Michael reactions (S ? Na), and LnPB-catalyzed asymmetric hydrophosphonylations of either imines or aldehydes (P ? K). Applications of these heterobimetallic catalysts to the syntheses of several biologically and medicinally important compounds are also described. Spectral analyses and computational simulations of the asymmetric reactions catalyzed by the heterobimetallic complexes reveal that the two different metals play different roles to enhance the reactivity of both reaction partners and to position them. From mechanistic considerations, a useful activation of the heterobimetallic catalyses was realized by addition of alkali metal reagents. The second part describes the development of another type of heterobimetallic catalysts featuring Group 13 elements such as Al and Ga as the central metal. Among them, the AlLibis(binaphthoxide) complex (ALB) is an effective catalyst for asymmetric Michael reactions, tandem Michael–aldol reactions, and hydrophosphonylation of aldehydes.  相似文献   

13.
A highly efficient catalytic system composed of a simple and commercially available chiral primary diamine (1R,2R)-cyclohexane-1,2-diamine(6) and trifluoroacetic acid (TFA) was employed for asymmetric Aldol reaction in em-PrOH at room temperature. A loading of 10%(molar fraction) catalyst 6 with TFA as a cocatalyst could catalyze the Aldol reactions of various ketones or aldehydes with a series of aromatic aldehydes, furnishing Aldol pro- ducts in moderate to high yields(up to >99%) with enantioselectivities of up to >99% and diastereoselectivities of up to 99:1.  相似文献   

14.
A catalytic asymmetric anti-selective nitroaldol reaction with a neodymium-sodium heterobimetallic catalyst is described. A readily accessible amide ligand works efficiently as a chiral platform for the Nd/Na heterobimetallic catalyst in the reaction of various aldehydes and nitroethane, affording anti-1,2-nitro alkanols in good diastereo- and enantioselectivity.  相似文献   

15.
Titanium(IV)(salen) and vanadium(V)(salen) complexes are both known to form catalysts for asymmetric cyanohydrin synthesis. When a mixture of titanium and vanadium complexes derived from the same or different salen ligands is used for the asymmetric addition of trimethylsilyl cyanide to benzaldehyde, the absolute configuration of the product and level of asymmetric induction can only be explained by in situ formation of a catalytically active heterobimetallic complex, and is not consistent with two monometallic species acting cooperatively. Combined use of complexes containing chiral and achiral salen ligands demonstrates that during the asymmetry inducing step of the mechanism, the aldehyde is coordinated to the vanadium rather than the titanium ion. The titanium complexes also catalyse the asymmetric addition of ethyl cyanoformate to aldehydes, a reaction in which vanadium(V)(salen) complexes are not active. For this reaction, use of a mixture of titanium and vanadium(salen) complexes results in a complete loss of catalytic activity, a result which again can only be explained by in situ formation of a heterometallic complex. Both the titanium and vanadium based catalysts also induce the asymmetric addition of potassium cyanide/acetic anhydride to aldehydes. For this reaction, combined use of chiral and achiral complexes indicates that during the asymmetry inducing step of the mechanism, the aldehyde is coordinated to titanium rather than vanadium, a result which contrasts with the observed results when trimethylsilyl cyanide is used as the cyanide source.  相似文献   

16.
Abstract

The reaction of novel chiral selenonium and telluronium ylides was investigated with aldehydes and compared to the sulfur analogues. (2R,5R)-2,5-Dimethylselenolane was prepared and reacted as a catalyst for the benzylidenation of aldehydes. Disubstituted epoxides were readily prepared with a (surprising) absence of diastereoselectivity, and with enantiomeric excesses higher than 90%. The reaction of a tellurium analogue, (2S,5S)-2,5-diethyltellurolane, afforded the oxirane in very moderate yield and e.e.'s in the range of 62–82%. Though this was less productive, it is the first report of a chiral telluronium ylide leading to an asymmetric epoxidation of aldehydes.  相似文献   

17.
New prolinamide derivatives modified with ionic liquid moieties were synthesized and studied as organocatalysts in asymmetric aldol reactions in water. Aldol reactions between cycloalkanones or methylketones and aromatic aldehydes proceeded under studied conditions with high conversions (yields), diastereo- and enantioselectivities in the presence of a hydrophobic catalyst bearing a PF6 anion (1-5 mol %). The procedure is scalable and the catalyst retained its diastereo- and enantioselectivity over at least four reaction cycles and its activity over at least three reaction cycles.  相似文献   

18.
脯氨酸催化的不对称有机反应   总被引:1,自引:0,他引:1  
郑欣  王永梅 《化学进展》2008,20(11):1675-1686
脯氨酸作为一种结构简单、商品化的、廉价小分子手性催化剂,在多种不对称催化反应中表现出非常好的催化性能,本文综述了近年来脯氨酸直接催化的不对称有机反应涉及Aldol反应,Mannich反应,Michael反应,Diels-Alder反应,直接α-胺化反应,α-氧胺化反应,Baylis-Hillman反应,还原反应和氧化反应的进展并展望了其应用前景。  相似文献   

19.
Full details of our newly developed catalyses with asymmetric zinc complexes as mimics of class II zinc-containing aldolase are described. A Et(2)Zn/(S,S)-linked-BINOL complex was developed and successfully applied to direct catalytic asymmetric aldol reactions of hydroxyketones. A Et(2)Zn/(S,S)-linked-BINOL 1 = 2/1 system was initially developed, which efficiently promoted the direct aldol reaction of 2-hydroxy-2'-methoxyacetophenone (7d). Using 1 mol % of (S,S)-linked-BINOL 1 and 2 mol % of Et(2)Zn, we obtained 1,2-dihydroxyketones syn-selectively in high yield (up to 95%), good diastereomeric ratio (up to 97/3), and excellent enantiomeric excess (up to 99%). Mechanistic investigation of Et(2)Zn/(S,S)-linked-BINOL 1, including X-ray analysis, NMR analysis, cold spray ionization mass spectrometry (CSI-MS) analysis, and kinetic studies, provided new insight into the active oligomeric Zn/(S,S)-linked-BINOL 1/ketone 7d active species. On the basis of mechanistic investigations, a modified second generation Et(2)Zn/(S,S)-linked-BINOL 1 = 4/1 with molecular sieves 3A (MS 3A) system was developed as a much more effective catalyst system for the direct aldol reaction. As little as 0.1 mol % of (S,S)-linked-BINOL 1 and 0.4 mol % of Et(2)Zn promoted the direct aldol reaction smoothly, using only 1.1 equiv of 7d as a donor (substrate/ligand = 1000). This is the most efficient, in terms of catalyst loading, asymmetric catalyst for the direct catalytic asymmetric aldol reaction. Moreover, the Et(2)Zn/(S,S)-linked-BINOL 1 = 4/1 system was effective in the direct catalytic asymmetric aldol reaction of 2-hydroxy-2'-methoxypropiophenone (12), which afforded a chiral tetrasubstituted carbon center (tert-alcohol) in good yield (up to 97%) and ee (up to 97%), albeit in modest syn-selectivity. Newly developed (S,S)-sulfur-linked-BINOL 2 was also effective in the direct aldol reaction of 12. The Et(2)Zn/(S,S)-sulfur-linked-BINOL 2 = 4/1 system gave aldol adducts anti-selectively in good ee (up to 93%). Transformations of the aldol adducts into synthetically versatile intermediates were also described.  相似文献   

20.
Chen JR  Lu HH  Li XY  Cheng L  Wan J  Xiao WJ 《Organic letters》2005,7(20):4543-4545
[reaction: see text] Readily tunable and bifunctional L-prolinamides as novel organocatalysts have been developed, and their catalytic activities were evaluated in the direct asymmetric Aldol reactions of various aromatic aldehydes and cyclohexanone. High isolated yields (up to 94%), enantioselectivities (up to 99% ee), and anti-diastereoselectivities (up to 99:1) were obtained under the optimal conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号