首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
用TBP-棉纤维吸附实现铬(Ⅵ)与铬(Ⅲ)的在线分离富集,并用流动注射(FI)-火焰原子吸收光谱法(FAAS)分别测定其含量。将TBP-棉纤维小球填入自制的锥形柱并组装在FI系统中作为分离单元。将预先调至pH 0.75的样品溶液,以4mL·min-1流量注入FI系统中,并在锥形柱中富集分离160s。此时铬(Ⅵ)被TBP-棉纤维吸附,而铬(Ⅲ)随流出液流出。收集流出液测定铬(Ⅲ)量。用水以2.6mL·min-1流量过锥形柱洗脱铬(Ⅵ),洗脱液引入FAAS,测定铬(Ⅵ)含量。铬质量浓度在0.100~0.900mg·L-1以内呈线性。对与0.02μg铬(Ⅲ)共存的0.10μg铬(Ⅵ)溶液作7次测定,计算得到铬(Ⅵ)测定值的相对标准偏差为6.4%。添加0.500mg·L-1铬(Ⅵ)及0.100mg·L-1铬(Ⅲ)溶液,计算得到铬(Ⅵ)及铬(Ⅲ)的平均回收率依次为119%和107%。  相似文献   

2.
采用在线离子交换预富集–火焰原子吸收光谱法(FLAAS)测定环境水样中痕量铬(Ⅵ)。通过试验考察样品溶液pH、洗脱剂浓度、离子交换树脂用量及共存离子对离子交换树脂富集效果的影响。结果表明,当交换树脂用量为0.50 g,样品溶液pH值为6.0时,用0.60 mol/L盐酸–10%抗坏血酸进行洗脱具有良好效果。铬(Ⅵ)的质量浓度在0~20.0μg/L之间与吸光度呈良好的线性关系,线性相关系数大于0.9998。该方法用于在线分离和富集环境水样中的铬(Ⅵ),灵敏度提高了100倍,加标回收率为96%~104%。  相似文献   

3.
提出了纳米二氧化铈吸附富集痕量铬,2mol.L-1氢氧化钠溶液作洗脱剂洗脱,用二苯卡巴肼分光光度法测定环境水样中铬(Ⅵ)含量的方法。在pH 4.0的介质中、吸附时间为40min、吸附剂用量为20mg时,纳米二氧化铈对铬(Ⅵ)的吸附容量为696μg.g-1。铬(Ⅵ)与二苯卡巴肼络合物的最大吸收波长为540nm,其质量浓度在0.012~1.2mg.L-1之间呈线性,检出限(3σ)为0.01mg.L-1。方法用于环境水样中铬的测定,加标回收率为99.4%。  相似文献   

4.
以交联羧甲基淀粉(CCMS)为吸附剂,悬浮体进样-石墨炉原子吸收法(GFAAS)测定环境水样中Cr(Ⅲ)和Cr(Ⅵ)形态。研究了溶液pH值、吸附时间、溶液体积、共存离子等对CCMS吸附Cr(Ⅲ)和Cr(Ⅵ)的影响。结果表明:在pH=6.0时,吸附15 min,CCMS可以选择性地吸附Cr(Ⅲ),对Cr(Ⅵ)不吸附,从而实现Cr(Ⅲ)和Cr(Ⅵ)的分离。将吸附Cr?的CCMS加0.1%的琼脂制成悬浮体直接进石墨炉检测,用1 mL 1%盐酸羟胺将Cr(Ⅲ)还原成Cr(Ⅵ),测总铬。方法对Cr(Ⅲ)的检出限为0.044μg/L,相对标准偏差(RSD)为10.4%(初始浓度CCr(Ⅲ)=1.0μg/L,n=11),富集倍数为50倍。将本方法应用于环境标准样品的测定,测得结果与标准值相符。  相似文献   

5.
利用自制微型离子交换柱 ,采用流动分析技术 ,对含铬 (Ⅵ )环境水样在线自动化分离和预浓集处理 ,联用分光光度检测手段 ,实现了在线自动化样品分离富集及测定。方法的线性范围是 1~ 40ng mL铬 (Ⅵ )。用于测定井水、自来水、电镀液、电镀废液、电镀排放液中的痕量铬 (Ⅵ ) ,回收率在 95 .7%~ 1 0 5 %之间  相似文献   

6.
采用流动注射—火焰原子吸收法则定天然水体中的微量铬(Ⅲ)和铬(Ⅵ)。用螯合树脂在线富集浓缩样品中的铬(Ⅲ),结合流动注射技术,将洗脱液直接导入火焰原子吸收分光光度仪中进行测定。加入盐酸羟胺使水体中的铬(Ⅵ)转化成铬(Ⅲ),然后间接测定。对在线富集测试条件、干扰物质的影响等进行了探讨。该方法检出限为0.84μg/mL,加标回收率为94.4%~103%。  相似文献   

7.
介绍了一种基于Cr(Ⅲ)-二亚乙基三胺五乙酸(DTPA)-NO3-体系的催化作用测定溶液中铬(Ⅵ)和无机态铬(Ⅲ)的方法.制作了银汞合金电极,并在其表面通过自组装修饰上DTPA.在含有0.1mol/L HAc-NaAc (pH=5.5)缓冲液和0.25mol/L KNO3溶液中,当电极电位在-0.80--1.40V间进行阴极化扫描时,溶液中Cr6 在电极表面被还原成为Cr3 并与电极表面上的DTPA络合,同时溶液中无机态铬(Ⅲ)也与DFPA络合,于-1.24V左右形成灵敏的还原峰.通过改变扫描前富集方式,分别实现铬(Ⅵ)和无机态铬(Ⅲ)的测定.铬(Ⅵ)和无机态铬(Ⅲ)的线性范围分别为:5.0×10-9~5.0×10-6mol/L和1.0×10-8~5.0× 10-6mol/L,检测限为1.6×10-10mol/L和5.1×10-9mol/L.对溶液进行11次平行测定相对标准偏差为4.3%.该法用于实际水样测定,Cr(Ⅵ)和Cr(Ⅲ)的标准加入回收率为98.5%~105.0%.  相似文献   

8.
在pH 5.7的乙酸-乙酸钠缓冲溶液中,铬(Ⅲ)与硫氰酸钾和亚甲基蓝(MB)反应生成稳定的离子缔合物[MB]_3[Cr(SCN)_6],使MB褪色,据此建立了褪色光度法测定铬(Ⅲ)含量的方法。最大吸收波长为664 nm,铬(Ⅲ)质量浓度在0.006~0.30 mg·L~(-1)范围内与吸光度减小值呈线性关系,表观摩尔吸光率为1.04×10~5L·mol~(-1)·cm~(-1),检出限(3s/k)为5.4μg·L~(-1)。方法用于测定电镀废水中铬(Ⅲ),测得其加标回收率的平均值为98.1%;测定值的相对标准偏差均小于2%。  相似文献   

9.
塑料制品中铅、汞、镉、铬(Ⅵ)测定   总被引:2,自引:0,他引:2  
塑料样品用硝酸、盐酸、高氯酸及过氧化氢(含硅样品尚须加入氢氟酸)加压消解,可按程序用微波加热或置于不锈钢压力罐中,密闭后在控温于190℃的烘箱中加热.所得试样溶液供电感耦合等离子体原子发射光谱法测定铅、汞及镉,要求及限量的盐酸抵消氯离子的影响,测定了标准物质中铅、汞、镉的含量,测得结果与证书值一致,铅、汞、镉测定值的相对标准偏差(n=9)在0.3%~8.0%之间.另取样品用二苯基羰酰二肼(DPC)光度法测定其铬(Ⅵ)含量,样品中铬(Ⅵ)用氢氧化钠-碳酸钠混合溶液和磷酸二氢钾-磷酸氢二钾缓冲溶液超声提取60 min,分取部分过滤提取液,按DPC光度法测定铬(Ⅵ)量.测得铬(Ⅵ)的平均回收率为95%,平均相对标准偏差(n=9)为0.35%.铅、汞、镉及铬(Ⅵ)的检出限(3σ)依次为0.011,0.007,0.003,0.001 mg·L-1.  相似文献   

10.
将镍铬合金牙冠样品置于人工唾液10mL中,于37℃浸泡4周。分取此唾液2.00mL,加入2g·L~(-1)二苯碳酰二肼(DPC)溶液0.1mL,Triton X-114(5+95)溶液0.6mL及硫酸(1+1)溶液0.5mL,加水定容为10 mL后,于40℃加热20min,使铬(Ⅵ)与DPC络合并溶入Triton X-114相中,实现铬(Ⅵ)的浊点萃取分离。将黏稠的Triton X-114液相分出,加入硝酸与甲醇(1+99)混合液定容至1mL。按所述仪器工作条件用石墨炉-原子吸收光谱法测定其中的铬(Ⅵ)量,进样量为10μL。铬(Ⅵ)的质量浓度在5.0μg·L~(-1)以内与相应的吸光度呈线性关系,检出限(3s/k)为0.088μg·L~(-1)。分别加1.0μg·L~(-1)铬(Ⅵ)标准溶液于6件牙冠样品溶液中,按方法测定后求得平均回收率为96%。对同一样品重复测定6次,计算其相对标准偏差为3.8%。  相似文献   

11.
将浊点萃取与火焰原子吸收光谱法联用对水样中铬的形态进行检测,在pH 7.7条件下,络合剂1-(2-吡啶偶氮)-2-萘酚(PAN)只与Cr(Ⅲ)络合而不与Cr(Ⅵ)反应,实现了环境水样品中Cr(Ⅲ)与Cr(Ⅵ)的分别测定。对影响浊点萃取效率的主要因素如酸度、试剂量、反应温度、时间等进行了研究,在最佳条件下,铬富集倍数为20倍。Cr(Ⅲ)的质量浓度在0.005~1.0 mg/L内与吸光度线性良好,线性相关系数r=0.999 8。用该方法对0.30 mg/L的Cr(Ⅲ)标准溶液平行测定11次,测定结果的相对标准偏差为2.9%,检出限为5.74μg/L。将该法用于自来水、河水、三亚温泉水、工厂污水水中铬的形态分析并进行加标回收试验,回收率为90.0%~106.5%。该法富集倍数高、重现性好,测定结果准确可靠。  相似文献   

12.
本文研究了Cr(Ⅵ)和Cr(Ⅱ)在苯基萤光酮(PF)-Triton X-100体系中的析相和显色反应,利用析相选择性分离、富集的特点,提出了用矩阵处理络合物重叠光谱的干扰,同时测定Cr(Ⅵ)和Cr(Ⅱ)的方法,用于合成水样、自来水和天然水中Cr(Ⅵ)、Cr(Ⅱ)的测定,取得了满意的结果。  相似文献   

13.
铬(Ⅵ)-亚铁氰化钾-鲁米诺体系化学发光反应的研究   总被引:2,自引:0,他引:2  
本文通过对铬(Ⅵ)-亚铁氰化钾-鲁米诺体系化学发光反应的研究,建立了一个测定铬(Ⅵ)的高灵敏化学发光分析法。方法的检出限为2×10~(-11)g/ml铬(Ⅵ);相对标准偏差小于2%(对1×10~(-10)g/ml铬(Ⅵ)11次测定);校正曲线的线性范围是1×10~(-10)~6×10~6g/ml铬(Ⅵ)。此方法已用于环境水样中铬(Ⅵ)的测定。  相似文献   

14.
采用离子色谱法测定聚合物材料中的铬(Ⅵ)含量。取粒径小于250μm的聚合物样品用0.5mol·L-1氢氧化钠溶液提取3h。分取适量提取液经过滤及RP柱净化后,通过IonPac AG19保护柱及DIONEX IonPac AS19阴离子分离柱分离,先后用25mmol·L-1和50mmol·L-1的氢氧化钠溶液淋洗分离柱,采用抑制电导检测器检测。铬(Ⅵ)的质量浓度在0.10~10.0mg·L-1范围内与其峰面积呈线性关系,检出限(3s/k)为7mg·kg-1。对聚氯乙烯(PVC)样品连续测定8次,测定值的相对标准偏差为9.2%。用标准加入法进行方法的回收试验,测得回收率在95.2%~105%之间。  相似文献   

15.
分光光度法测定钢电镀层中的铬(Ⅵ)   总被引:1,自引:0,他引:1  
建立了用弱碱性溶液萃取—二苯卡巴肼分光光度法测定电镀钢中铬的方法。结果表明,在Cr(Ⅵ)质量浓度为0.0~1.0 mg/L的范围内与吸光度线性关系良好,r=0.999 8,加标回收率为97.0%~105.2%,相对标准偏差RSD为3.75%。  相似文献   

16.
内装活性氧化铝(碱式)和阴离子交换树脂的微型柱流动注射在线富集分离水体中的铬(Ⅲ)和铬(Ⅵ),火焰原子吸收法直接检测。微型住可同时富集两种价态的离子,分别用1mol/L的NH4NO3和HNO3洗脱Cr(Ⅵ)和Cr(Ⅲ)于喷雾器中。进样时间25s,铬(Ⅵ)和铬(Ⅲ)的富集倍数分别为11倍和20倍,实际水样的加标回收率在90%~106%之间;分析速率为50个样/h;铬(Ⅵ)、铬(Ⅲ)的检出限(3δ)分别为1.5μg/L和0.7μg/L;相对标准偏差(50μg/L)分别为1.9%和2.6%。  相似文献   

17.
基于在pH=4.5的HAc-NaAc缓冲介质中,微量铬(Ⅵ)催化过氧化氢氧化混合指示剂(中性红和亚甲基蓝)褪色的指示反应,建立了双波长双指示剂催化动力学光度法测定微量铬(Ⅵ)的新方法。方法的线性范围为0.005~0.3μg/mL,检出限为8.7×10-4μg/mL。该方法操作简单,灵敏度高,选择性好,用于环境水样中微量铬(Ⅵ)的测定,回收率在98.5%~102.5%之间,结果满意。  相似文献   

18.
紫外-可见吸光光度法同时测定铬(Ⅲ)和铬(Ⅵ)   总被引:5,自引:0,他引:5  
关于铬 (Ⅲ )和铬 (Ⅵ )测定有若干报道 ,但大多数是分离后分别进行测定[1,2 ] ,或先测定出铬 (Ⅲ )或者铬 (Ⅵ ) ,然后通过氧化或还原测出铬的总量 ,再用差减法求出另一个价态铬的含量[3 ] ,这些方法比较麻烦 ,且在处理过程中易导致价态的改变 ,文献 [4]曾研究利用铬 (Ⅲ )与EDTA反应 ,可在铬 (Ⅲ )存在下光度法测定铬 (Ⅵ ) ,并指出同时测定铬 (Ⅲ )和铬(Ⅵ )的可能。文献 [5 ]也对此进行了研究 ,采用先进仪器 ,用最小二乘法 ,建立了多元校正 紫外 可见吸光光度法同时测定铬 (Ⅲ )和铬 (Ⅵ )的方法。此法虽解决了吸收光谱重叠问题 ,…  相似文献   

19.
基于铬(Ⅵ)对过氧化氢与靛蓝胭脂红之间的氧化还原反应的催化作用,对应用此催化反应作为测定痕量铬的催化动力学荧光光度法的基础进行了研究。优化的反应条件如下:在10mL总体积中依次加入1.0×10-3 mol·L-1靛蓝胭脂红溶液1.5mL,30%(w)过氧化氢溶液0.1mL及pH 4.0乙酸-乙酸钠缓冲溶液3mL。在65℃条件下反应11min,迅速冷却至室温。在波长λex330nm和λem415nm处测其荧光强度,并计算ΔF(F-F0)值。所测得的ΔF值与铬(Ⅵ)的质量浓度在0.001~0.06mg·L-1范围内呈线性关系。检出限(3s/k)为0.004 4mg·L-1。应用此法分析了明胶胶囊,并进行了回收试验,测得平均回收率为98.0%。  相似文献   

20.
流动注射分光光度法快速测定水样中的铬   总被引:2,自引:0,他引:2  
建立了用流动注射分光光度法快速检测水样中铬含量的方法.测定耗时140 s,测定频率25样/h.本法利用Cr(Ⅵ)和二苯碳酰二肼显色反应,Cr(Ⅵ)标准溶液的质量浓度在0.05~0.8 mm/L之间与吸光度呈线性.该法的检出限是4.0 μg/L,低于国家对Ⅰ类水的相关标准.应用此法分别测定了北京城区一些地表水中铬的含量,加标回收率在90.1%~113%之间.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号