首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 144 毫秒
1.
王禄  马伟  韩梅  孟长功 《化学学报》2007,65(12):135-1139
以MnCl2·4H2O,LiOH·H2O等试剂为初始原料,采用溶胶-凝胶、水热处理、固化等软化学合成步骤制备了锂离子筛前驱体Li1.6Mn1.6O4,并经稀盐酸抽锂后得到了高选择性锂离子筛吸附剂MnO2·0.5H2O.着重对合成过程中锂锰比,氧化剂用量等因素影响进行了探讨,并对所制备吸附剂的吸附性能进行了研究.结果表明,经软化学合成步骤制备的锂离子筛对Li 有良好的吸附量和选择性,在未来从海水、卤水等液态锂资源富集或提取锂的应用中具有很大的潜力.  相似文献   

2.
由110 nm聚苯乙烯(PS)微球组装晶体胶体模板,并用此模板合成三维有序大孔(3-dimensionally ordered macroporous,3DOM)锂离子筛前驱体Li4Ti5O12,用1.0 mol.L-1的盐酸改型制得锂离子筛H4Ti5O12(LiTi-H)。用XRD、SEM、饱和交换容量、pH滴定曲线等表征了材料的形貌、结构和离子交换性能。同时测定了25℃时LiTi-H在0.05 mol.L-1Li+体系吸附锂的动力学数据,并采用吸附动力学Bangham方程和Elovich方程关联离子筛LiTi-H对Li+的离子交换动力学数据。结果表明:PS胶体晶体模板和3DOMLi4Ti5O12锂离子筛前驱体均排列规则有序,大孔直径约90 nm,Li4Ti5O12为尖晶石结构;3DOM Li4Ti5O12酸稳定性好,锂离子筛LiTi-H对Li+具有较高的选择性,对Li+的饱和交换容量达56.70 mg(Li+).g-1;动力学模型用Elovich模型关联较好,离子筛对Li+的离子交换动力学方程是Q=-26.510 4+11.977 4lnt(25℃)。  相似文献   

3.
用MnO_2离子筛吸附剂从溶液中提取锂(英文)   总被引:1,自引:0,他引:1  
研究了MnO2离子筛的制备、表征及其提锂性能。通过控制低温水热合成反应条件制备了4种不同晶相的一维纳米MnO2,进一步用浸渍法制备了Li-Mn-O三元氧化物前驱体,并经酸处理后得到对Li+具有特殊选择性的离子筛。用XRD、吸附等温线、吸附动力学及pH滴定等手段对产物的晶相结构和Li+吸附性能进行了研究。结果表明,SMO-b和SMO-d离子筛的Li+平衡吸附量符合Freundlich吸附等温方程。反应物浓度对MnO2不同晶面的生长速率有不同的影响,但(NH4)2SO4对吸附容量并无提高。吸附速率方程符合一级动力学Lagergren方程。MnO2离子筛Li+的吸附量远远高于Na+。  相似文献   

4.
以MnSO4,KMnO4及LiOH为原料,经水热处理后得到LiMnO2,再由固相焙烧得到尖晶石相Li1.6Mn1.6O4,酸洗处理后得到锂离子筛。研究了水热温度,氧气和MnO4-/Mn2+的物质的量之比(nMnO4∶nMn^2+)对所得LiMnO2的组成及相应前驱体Li1.6Mn1.6O4酸处理中Mn溶损率的影响。开路电势测量及化学分析表明,氧气会参与反应。若按照理论氧化剂用量nMonO4∶nMn^2+=1∶4进行水热反应会导致杂质Li2MnO3和LiMn2O4的生成。若控制水热温度为160℃,nMnO4∶nMn^2+=1∶6时可得到纯相正交LiMnO2(o-LiMnO2)。所得离子筛在高镁锂比盐湖卤水中Li+吸附容量可达42.87 mg·g^-1,且对Li+具有优异的选择吸附性并遵循化学吸附过程。经过5个循环后吸附容量保持在37.21 mg·g^-1,锰溶损率降至0.34%。  相似文献   

5.
用LiNO3、Mn(Ac)2•4H2O和柠檬酸的混合溶液填充聚甲基丙烯酸甲酯胶体晶体模板, 在空气中氧化焙烧, 制备出三维有序大孔尖晶石型锂锰氧化物Li1.6Mn1.6O4. 前驱体经过0.1 mol/L盐酸脱锂后获得相应的三维有序大孔锂离子筛, 其大孔直径和孔壁厚度分别为240 nm和50 nm左右. XRD测试结果表明, Li1.6Mn1.6O4、锂离子筛和吸锂后的样品均保持尖晶石结构. 三维有序大孔材料呈现彼此连通的孔道空间, 缩短了Li+的平衡吸附时间, 前驱体脱锂率在80 ℃时达到95%, 而锰的溶损率在低于60 ℃时小于2.5%. 溶液温度对Li+的交换能力影响很大, 升高温度, Li+与H+的可逆交换程度增大, Li+的最大吸附容量为56.7 mg/g, 但处于锰16d八面体缺陷位置的氢难于被交换. pH滴定和分配系数(Kd)分析表明, 该固体酸在Li+, Na+和K+共存溶液中对Li+的吸附具有较高的选择性.  相似文献   

6.
LiNi0.05Mn1.95O4的合成及其对Li+的离子交换热力学   总被引:1,自引:0,他引:1  
以乙酸锂、乙酸锰和乙酸镍为原料,采用溶胶-凝胶法合成出掺镍的尖晶石型锂锰氧化物LiNi0.05Mn1.95O4.用0.5 mol·L-1的过硫酸铵对其进行酸改性后制得锂离子筛(记作LiNiMn-H).经测定LiNi0.05Mn1.95O4在酸改性过程中Mn2+的溶出率仅为0.31%(w,质量分数),LiNiMn-H对锂离子的饱和交换容量达5.29 mmol(36.72 mg)Li+/g离子筛.测定了15、25、35、45℃LiNiMn-H在H+-Li+体系吸附锂的离子交换等温线,并利用Pitzer电解质溶液理论计算出该离子交换体系的活度系数,得到H+-Li+交换的平衡常数Ka,△Gm、△Hm,和△Sm等热力学参数.结果表明,Ka随温度的升高而降低,LiNiMn-H对Li+的选择性大于原来可交换阳离子(H+)的选择性,吸附锂的过程是自发过程(△Gm<0),该离子交换反应是放热反应.  相似文献   

7.
以乙酸锂、乙酸锰和乙酸镍为原料, 采用溶胶-凝胶法合成出掺镍的尖晶石型锂锰氧化物LiNi0.05Mn1.95O4. 用0.5 mol·L-1的过硫酸铵对其进行酸改性后制得锂离子筛(记作LiNiMn-H). 经测定LiNi0.05Mn1.95O4在酸改性过程中Mn2+的溶出率仅为0.31%(w, 质量分数), LiNiMn-H对锂离子的饱和交换容量达5.29 mmol (36.72 mg) Li+/g 离子筛. 测定了15、25、35、45 ℃ LiNiMn-H 在H+-Li+体系吸附锂的离子交换等温线, 并利用Pitzer 电解质溶液理论计算出该离子交换体系的活度系数, 得到H+-Li+交换的平衡常数Ka, △Gm、△Hm和△Sm等热力学参数. 结果表明, Ka随温度的升高而降低, LiNiMn-H对Li+的选择性大于原来可交换阳离子(H+)的选择性, 吸附锂的过程是自发过程(△Gm<0), 该离子交换反应是放热反应.  相似文献   

8.
采用低温悬浮聚合造粒法,以苯乙烯为基体,以掺杂10%Li2Ti O3的Li1.6Mn1.6O4为原料,以正庚烷为造孔剂制备球形锂离子筛前驱体,经0.5 mol/L的HCl解析后得到球形锂离子筛。用扫描电子显微镜、X射线衍射仪、原子吸收分光光度计对样品的形貌和吸附性能等进行表征,实验结果表明,加入苯乙烯体积的5%正庚烷后的锂离子筛呈球形,锂离子筛中的孔隙率明显增加,比表面积达到1.768 m2/g,锂离子筛锂吸附量达到最大值9 mg/g,相比不添加正庚烷的对照组锂吸附量增加28.8%。吸附过程符合二级吸附动力学模型,属于化学吸附。球形锂离子筛的循环性能较好,添加5%正庚烷锂离子筛循环吸附10次后,Mn平均单次溶损率为0.13%,Ti平均单次溶损率为0.028%。  相似文献   

9.
Li4Mn0.5Ti0.5O4合成与鉴定   总被引:4,自引:0,他引:4  
Li4Mn0.5Ti0.5O4合成与鉴定;LiMnTi复合氧化物;尖晶石型结构;离子筛;离子交换;锂  相似文献   

10.
偏钛酸型锂离子交换剂表面性质与选择吸附性研究   总被引:11,自引:0,他引:11  
本文采用Li渗入于TiO2经高温热力学重结晶制备偏钛酸型锂离子交换剂,其对碱金属、碱土金属溶液中的Li+ 具有特殊选择吸附性,其次序为Li+>Mg2+>Ca2+>Na+,K+。对交换剂表面性质以及Li+ 在固-液界面的选择吸附特性进行了研究。通过对某气田卤水提锂实验表明:该交换剂对低Li+ 含量卤水中Li+ 的选择性吸附效果显著,对Mg2+、Ca2+、Na+、K+ 的分离效果好,Li+ 的富集倍数达9倍,并具有较好的循环稳定性。  相似文献   

11.
The cubic phase LiMn2O4 precursors are prepared by high-temperature calcinations (1003 K) of LiOH⋅H2O and MnO2 mixture with Li/Mn molar ratio = 0.55. The Li4Mn5O12 precursors are synthesized via low-temperature solid-phase reaction (673 K) of LiNO3 and MnO2 mixture with Li/Mn molar ratio = 1.0. The ion-sieves counterparts (named SMO-H and SMO-L, respectively) are obtained by the acid treatment of Li-Mn-O precursors. The structure, chemical stability, morphology, ion-exchange property and mechanism of Li-Mn-O precursors and MnO2 ion-sieve were systematically examined via X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), selected-area electron diffraction (SAED), Infrared Spectroscopy (IR), X-ray photoelectron spectroscopy (XPS) and lithium ion selective adsorption measurements. The result shows the more compact Mn-O lattice makes the Li4Mn5O12 spinel more stable after the Li+ is extracted. The results of IR and XPS show adsorption process of SMO-H exists ion-exchange between the Li+ and protons, and redox reaction, but only exists ion-exchange between the Li+ and protons in SMO-L. Agglomeration is well-improved by low calcination temperature and the morphology of the Li4Mn5O12 precursor and final MnO2 ion-sieve are effectively controlled within low-dimensional structure. The maximum pH titration capacity of SMO-L for Li+ is 6.76 mmol⋅g−1, but only 3.47 mmol⋅g−1 for SMO-H. The ion-sieve obtained from Li4Mn5O12 precursor is promising in the lithium extraction from brine or seawater.  相似文献   

12.
用溶胶-凝胶法合成出尖晶石结构的LiNi0.05Mn1.95O4,用0.5 mol·L-1过硫酸铵对其进行改型,制得锂离子筛LiNiMn-H.LiNiMn-H对Li+的饱和交换容量达5.2 mmol·g-1.用缩核模型(Shrinking-Core Model)处理该离子交换的反应动力学数据得到LiNiMn-H吸附Li+时离子交换反应的控制步骤是颗粒扩散控制(PDC),同时得到了该实验条件下锂离子筛LiNiMn-H吸附Li+的动力学方程和颗粒扩散系数De.  相似文献   

13.
To achieve rapid and highly efficient recovery of Li+ from seawater, a series of H2TiO3/cellulose aerogels (HTO/CA) with a porous network were prepared by a simple and effective method. The as-prepared HTO/CA were characterized and their Li+ adsorption performance was evaluated. The obtained results revealed that the maximum capacity of HTO/CA to adsorb Li+ was 28.58 ± 0.71 mg g−1. The dynamic k2 value indicated that the Li+ adsorption rate of HTO/CA was nearly five times that of HTO powder. Furthermore, the aerogel retained extremely high Li+ selectivity compared with Mg2+, Ca2+, K+, and Na+. After regeneration for five cycles, the HTO/CA retained a Li+ adsorption capacity of 22.95 mg g−1. Moreover, the HTO/CA showed an excellent adsorption efficiency of 69.93% ± 0.04% and high selectivity to Li+ in actual seawater. These findings confirm its potential as an adsorbent for recovering Li+ from seawater.  相似文献   

14.
Li4Ti5O12 thin films for rechargeable lithium batteries were prepared by a sol-gel method with poly(vinylpyrrolidone). Interfacial properties of lithium insertion into Li4Ti5O12 thin film were examined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and potentiostatic intermittent titration technique (PITT). Redox peaks in CV were very sharp even at a fast scan rate of 50 mV s−1, indicating that Li4Ti5O12 thin film had a fast electrochemical response, and that an apparent chemical diffusion coefficient of Li+ ion was estimated to be 6.8×10−11 cm2 s−1 from a dependence of peak current on sweep rates. From EIS, it can be seen that Li+ ions become more mobile at 1.55 V vs. Li/Li+, corresponding to a two-phase region, and the chemical diffusion coefficients of Li+ ion ranged from 10−10 to 10−12 cm2 s−1 at various potentials. The chemical diffusion coefficients of Li+ ion in Li4Ti5O12 were also estimated from PITT. They were in a range of 10−11-10−12 cm2 s−1.  相似文献   

15.
Layered LiNi0.4Co0.2Mn0.4O2, Li[Li0.182Ni0.182Co0.091Mn0.545]O2, Li[Li1/3Mn2/3]O2 powder materials were prepared by rheological phase method. XRD characterization shows that these samples all have analogous structure to LiCoO2. Li[Li0.182Ni0.182Co0.091Mn0.545]O2 can be considered to be the solid solution of LiNi0.4Co0.2Mn0.4O2 and Li[Li1/3Mn2/3]O2. Detailed information from XRD, ex situ XPS measurement and electrochemical analysis of these three materials reveals the origin of the irreversible plateau (4.5 V) of Li[Li0.182Ni0.182Co0.091Mn0.545]O2 electrode. The irreversible oxidation reaction occurred in the first charging above 4.5 V is ascribed to the contribution of Li[Li1/3Mn2/3]O2 component, which maybe extract Li+ from the transition layer in Li[Li1/3Mn2/3]O2 or Li[Li0.182Ni0.182Co0.091Mn0.545]O2 through oxygen release. This step also activates Mn4+ of Li[Li1/3Mn2/3]O2 or Li[Li0.182Ni0.182Co0.091Mn0.545]O2, it can be reversibly reduced/oxidized between Mn4+ and Mn3+ in the subsequent cycles.  相似文献   

16.
LiMnC2O4(Ac) precursor in which Li+ and Mn2+ were amalgamated in one molecule was prepared by solid-state reaction at room-temperature using manganese acetate, lithium hydroxide and oxalic acid as raw materials. By thermo-decomposition of LiMnC2O4(Ac) at various temperatures, a series of Li1+y[Mn2−xLix]16dO4 spinels were prepared with Li2MnO3 as impurities. The structure and phase transition of these spinels were investigated by XRD, TG/DTA, average oxidation state of Mn and cyclic voltammeric techniques. Results revealed that the Li-Mn-O spinels with high Li/Mn ratio were unstable at high temperature, and the phase transition was associated with the transfer of Li+ from octahedral 16c sites to 16d sites. With the sintering temperature increasing from 450 to 850 °C, the phase structure varied from lithiated-spinel Li2Mn2O4 to Li4Mn5O12-like to LiMn2O4-like and finally to rock-salt LiMnO2-like. A way of determining x with average oxidation state of Mn and the content of Li2MnO3 was also demonstrated.  相似文献   

17.
Spinel Li4Mn5O12 nanoparticles have been prepared by a very simple sol–gel method. Various initial conditions were studied in order to find the optimal conditions for the synthesis of pure Li4Mn5O12. X-ray diffraction results showed that spinel Li4Mn5O12 was obtained at a low temperature of 300 °C without any miscellaneous phase. Scanning electron microscope analyses indicated that the prepared Li4Mn5O12 powders had a uniform morphology with average particle size of about 50 and 100 nm. The prepared sample was firstly used as a cathode material in an asymmetric Li4Mn5O12/AC supercapacitor in aqueous electrolyte. The capacitive properties of the hybrid supercapacitor were tested by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge–discharge tests. The results showed that Li4Mn5O12 annealed at 450 °C for 4 h exhibited the best electrochemical capacitive performance within the potential range of 0–1.4 V in 1 M Li2SO4 solution. A maximum specific capacitance of 43 F g−1 based on the total active material weight of the two electrodes was obtained for the Li4Mn5O12/AC supercapacitor at a current density of 100 mA g−1. The capacitor showed excellent cycling performance and structure stability via 1,000 cycles.  相似文献   

18.
Single-crystal magnesium-doped spinel lithium manganate cathode materials are prepared by the hydrothermal method followed by the heat treatment. XRD patterns reveal that Mg2+ions have already diffused into the Li1.088Mn1.912O4 crystal structure and not affect the Fd3m space group. SEM images demonstrate that the magnesium-doped spinel lithium manganates show uniform polyhedral single crystals with 2–4 μm. Electrochemical performance demonstrates that the optimized composition of Li1.088Mg0.070Mn1.842O4 electrode exhibits the best electrochemical properties. It delivers 92.0 mAh g?1 at 8C rates and corresponds to 90.8% capacity retention (vs. 1C), far higher than those of the pristine electrode (70.4 mAh g?1 and 69.2%). In addition, the Li1.088Mg0.070Mn1.842O4 electrode also shows 95.5% capacity retention after 100 cycles at 1C, while the pristine electrode only shows 91.0% capacity retention. The excellent electrochemical performances of Li1.088Mg0.070Mn1.842O4 electrode are ascribed to the suppressed polarization, more stable crystal structure, and better kinetic characteristics.  相似文献   

19.
Porous microspherical Li4Ti5O12 aggregates (LTO‐PSA) can be successfully prepared by using porous spherical TiO2 as a titanium source and lithium acetate as a lithium source followed by calcinations. The synthesized LTO‐PSA possess outstanding morphology, with nanosized, porous, and spherical distributions, that allow good electrochemical performances, including high reversible capacity, good cycling stability, and impressive rate capacity, to be achieved. The specific capacity of the LTO‐PSA at 30 C is as high as 141 mA h g?1, whereas that of normal Li4Ti5O12 powders prepared by a sol–gel method can only achieve 100 mA h g?1. This improved rate performance can be ascribed to small Li4Ti5O12 nanocrystallites, a three‐dimensional mesoporous structure, and enhanced ionic conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号