首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 733 毫秒
1.
为得到3,4-二取代双环硫化磷酸酯的中间体5-叔丁基-5-(1'-羟基-2'-甲基丙基)-2,2-二甲基-1,3-二氧六环, 通过5-叔丁基-5-甲酰基-2,2-二甲基-1,3-二氧六环与异丙基溴化镁反应没有得到目标化合物, 而得到了还原产物, 改用异丙基锂代替异丙基溴化镁反应后得到目标化合物, 通过超声波辅助反应, 大幅度提高了反应收率.  相似文献   

2.
在DMF溶剂中,不外加催化剂使芳香醛(1)与2,2-二甲基-1,3-二氧六环-4,6-二酮(2)发生缩合反应生成2,2-二甲基-5-芳亚甲基-1,3-二氧六环-4,6-二酮(3a~f)。在同样条件下,芳香醛与5,5-二甲基-1,3-环己二酮(4)则发生缩合和迈克尔加成反应生成2,2'-芳亚甲基双(3-羟基5,5-二甲基-2-环己烯-1-酮)(5a~h)。用单晶X-射线分析法确定了产物5b的晶体结构。  相似文献   

3.
在DMF溶剂中,不外加催化剂使芳香醛(1)与2,2-二甲基-1,3-二氧六环-4,6-二酮(2)发生缩合反应生成2,2-二甲基-5-芳亚甲基-1,3-二氧六环-4,6-二酮(3a~f)。在同样条件下,芳香醛与5,5-二甲基-1,3-环己二酮(4)则发生缩合和迈克尔加成反应生成2,2’-芳亚甲基双(3-羟基-5,5-二甲基-2-环己烯-1-酮)(5a~h)。用单晶X-射线分析法确定了产物5b的晶体结构。  相似文献   

4.
王文丽  何清  丁茹  贺云  张尊听 《有机化学》2014,(9):1875-1880
以邻羟基苯乙酮为原料,与N,N-二甲基甲酰胺-二甲基缩醛(DMF-DMA)分子间缩合合成(E)-3-二甲氨基-1-(2'-羟基苯基)-1-丙烯酮中间体(2);中间体2与1,3-二苯基丙酮在以DMF为溶剂,K2CO3存在下发生缩合反应生成4'-苯基-2,3'-羟基-1,1':2',1'-三联苯类化合物(3);化合物3以乙腈-1%HCl(V∶V=1∶1)为溶剂,汞灯500 W照射分子内脱水关环合成2-苯基-1-羟基联三苯叉类化合物(4).三步缩合法合成2-苯基-1-羟基联三苯叉具有操作简单、无需氧化剂与催化剂、原子利用率高等优点.采用FT-IR,1H NMR,13C NMR和HRMS对化合物3和4进行了表征.  相似文献   

5.
报道了4-异丁氧基-10-羟基-1,7-二氮杂菲-2,8-二羧酸甲酯(1)的选择性合成.化合物1是以间苯二胺(3)为起始原料,经三步反应合成得来.间苯二胺和1,4-二羧酸二甲酯丁炔(4)反应生成了1,3-二-(1,2-二甲氧羰基-乙烯氨基)苯(5),随后化合物5在二苯醚中加热回流,生成4,10-二羟基-1,7-邻二氮杂菲-2,8-二羧酸甲酯(6)和4,5-二羟基-1,8-二氮杂蒽-2,7-二羧酸甲酯(7).从核磁共振氢谱中可以估算出,化合物6的产率是化合物7的7~9倍.化合物6和7的混合物通过Mitsunobu反应生成了化合物1和4,5-二异丁氧基-1,8-二氮杂蒽-2,7-二羧酸甲酯(2),其中化合物1的产率是化合物2的5~7倍.晶体结构清楚地表明化合物1中10位上的羟基与1位上的氮原子之间形成了六元环分子内氢键,而在化合物2中却没有发现分子内氢键,此现象很好的说明了氢键的形成与选择性合成之间存在着重要的联系.  相似文献   

6.
以4,6-二氯-5-(2-甲氧基苯氧基)-2,2'-双嘧啶和4-叔丁基苯磺酰胺为原料,经缩合反应制得中间体N-{6-氯-5-(2-甲氧基-苯氧基)[2,2'-嘧啶]-4-基}-4-(叔丁基苯基)-磺酰胺(3);3与乙二醇经缩合反应合成了波生坦(1),总收率81.4%。3经水解反应合成了N-{6-羟基-5-(2-甲氧基-苯氧基)[2,2'-嘧啶]-4-基}-4-(叔丁基苯基)-磺酰胺(4);4与1,2-二溴乙烷经缩合反应合成了1,2-双{[5-(2-甲氧基苯氧基)-2-(2-嘧啶-2-基-嘧啶-4-基]-4-叔丁基苯磺酰胺}-乙二醇(5),其结构经1H NMR,13C NMR和MS确证。4和5为波生坦中可能存在的杂质。  相似文献   

7.
采用非线性透过率法测定了多枝[1,3,4]-噁二唑衍生物的双光子吸收性质. 测定了化合物的单光子荧光光谱和双光子荧光光谱, 在800 nm波长的激光激发下, 9-乙基-3,6-双{5-(4-叔丁基苯基)-[1,3,4] 噁二唑-2-苯乙烯基}-咔唑(3)和三-{5-(4-叔丁基苯基)-[1,3,4] 噁二唑-2-苯乙烯基-4-苯基}-胺(4)能够发出很强的蓝色和黄绿色双光子上转换荧光, 荧光峰分别位于485和547 nm. 这些多枝结构化合物的双光子吸收截面较大(数值超过104 GM), 并具有很强的光限幅效应. 多枝分子中重复单元的推拉电子结构和协同效应有效地增强了分子的双光子吸收性质.  相似文献   

8.
对称4-枝和8-枝噁二唑衍生物的合成与荧光性质   总被引:1,自引:0,他引:1  
朱晓勤  钱鹰 《有机化学》2009,29(12):1975-1982
采用Wittig-Horner和Heck反应合成了3个对称多枝[1,3,4]-噁二唑衍生物2,5-双{4-{4-[N,N-二(4-溴苯基)-氨基] 苯乙烯基}苯基}-1,3,4-噁二唑(BrPASPO), 2,5-双{4-{4-{N,N-二{4-{4-[5-(4-叔丁基苯基)-1,3,4-噁二唑基-2-]苯乙烯基}苯基}氨基}苯乙烯基}苯基}-1,3,4-噁二唑(TPASPO)和2,5-双{4-{4-{N,N-二{4-{3,5-二[5-(4-叔丁基苯基)-1,3,4-噁二唑基-2]-苯乙烯基}苯基}氨基}苯乙烯基}苯基}-1,3,4-噁二唑(OPASPO). 目标化合物的结构经过红外光谱、核磁共振氢谱、质谱和熔点确认. 在CH2Cl2溶液中三者的最大吸收波长分别在403 (BrPASPO), 408 (TPASPO)和409 nm (OPASPO), 荧光发射峰分别为495 (BrPASPO), 509 (TPASPO)和506 nm (OPASPO). 化合物TPASPO和OPASPO在CH2Cl2溶液中的荧光量子产率分别为0.47和0.45. 8枝化合物的荧光寿命高于4枝化合物. 对称多枝化合物具有很强的分子内电荷转移能力和荧光发射能力.  相似文献   

9.
报道了由芳香醛合成4,4',6,6'-取代-2,2'-联吡啶化合物的方法,合成了一系列钠穴状化合物以及两个铕穴状化合物[Eu?bpy·bpy·bpy]·2Cl·Br(bpy=6,6'-二亚甲基-2,2'-联吡啶-4,4'-二甲酯)(23)和[Eu?bpy~1·bpy~1·bpy~2]·2Cl·Br(bpy~1=6,6'-二亚甲基-2,2'-联吡啶-4,4'-二甲酸,bpy~2=6,6'-二亚甲基-2,2'-联吡啶-4,4'-二甲酰乙二胺)(24).目标化合物均经过~1H NMR、13C NMR和高分辨质谱(HRMS)表征.X射线单晶衍射(XRD)和HRMS鉴定了铕穴状化合物23的结构.对23的荧光光谱(PL)、荧光衰减曲线和绝对量子产率(η)的研究结果表明,23能够有效地被近紫外光激发,显示荧光寿命(τ)为0.32 ms,η为70%的亮红色荧光,表明23是一种在发光和照明显示之中有着潜在应用的荧光材料.  相似文献   

10.
杨圣伟  陈熙  李振卿  敖桂珍  候丙波 《合成化学》2011,19(5):619-621,625
以莽草酸为起始原料,经酯化、丙酮叉保护顺式邻二羟基、叔丁基二甲硅烷保护羟基、还原、羟基酯化、脱保护基、保护反式邻二羟基、烯丙醇氧化,脱保护基共9步反应,合成了新型(5R,6S)-3-苯甲酰氧基亚甲基-5,6-二羟基-2-环己烯-1-酮,总产率19.3%,其结构经1H NMR,IR和HR-MS表征.  相似文献   

11.
以3,5-二溴-1-{3-(十二烷氧基)-2-[(十二烷氧基)甲基]丙氧基}苯和2-甲基-3-丁炔-2-醇为原料,经选择性Sonogashira偶联反应,Sonogashira偶联反应和去硅保护基反应制得中间体--3-乙炔基-5-(3-甲基-3-羟基)-丁炔基-1-(3-十二烷氧基)-2-{[(十二烷氧基)甲基]丙氧基}苯(6); 6经改良的Glaser偶联反应(CuI为催化剂,Et3N为溶剂)合成了一个新型的丁二炔衍生物(1)。 6与2,2′-[(2,5-二碘-1,4-亚苯基)双(氧基)]双(四氢-2H-吡喃)经Sonogashira偶联,脱 THP保护基和改良的Glaser偶联反应合成了一个新型的丁二炔衍生物(2)。中间体,1和2的结构经1H NMR, 13C NMR和MALDI-TOF-MS表征。  相似文献   

12.
将柔性苄氨基三羧酸配体5-(3-羧基-4-甲氧基苄氨基)间苯二甲酸(H3L)与硝酸镉和不同含氮配体在溶剂热条件下反应, 制得了配合物{[Cd(HL)(bpea)·H2O]·H2O·DMF}n(1)、 {[Cd(HL)(bpp)·H2O]·2H2O·DMF}n(2)和 {[Cd(HL)(dmbpy)]·DMF}n(3)[bpea=bis(4-pyridyl)ethane; bpp=1,3-bis(4-pyridyl)propane; dmbpy=5,5′-dimethyl-2,2′-bipyridine]. 3个配合物分别表现出有趣的2D→2D穿插结构和一维带状结构. 荧光性质测试结果表明, 所有配合物的荧光均可被Cr2O72?猝灭, 而在乙酰丙酮的DMF溶液中, 只有配合物1表现出明显的荧光增强. 羧酸配体的柔性、 含氮配体的类型和结构可以调控配合物的结构和荧光性能.  相似文献   

13.
李荣  王强  张灯青  李贤英  向芸颉  金武松 《合成化学》2015,23(12):1147-1149
以2-[2-(2-甲氧基乙氧基)乙氧基]乙基-4-甲基苯磺酸为原料,经2步反应制得中间体2,2′-【2,5-二{2-[2-(2-甲氧基乙氧基)乙氧基]}1,4-二(4,4,5,5-四甲基)-1,3,2-二氧硼基】苯(6); 3-溴-1,10-邻菲啰啉和6经Suzuki偶联反应合成了一个新型的邻菲啰啉衍生物--3,3′-【2,5-二{2-[2-(2-甲氧基乙氧基)乙氧基]}-1,4-二(1,10-菲啰啉基)】苯,其结构经1H NMR和MALDI-TOF-MS表征。  相似文献   

14.
从薤(Allium chinense G. Don)的乙醇提取物中分离得到6个新甾体皂苷类化合物, 通过波谱数据及理化性质分析, 鉴定其分别为5α-cholano-22,16-内酯-3-O-β-D-吡喃葡萄糖基-(1→2)-[β-D-吡喃葡萄糖基-(1→3)]-β-D-吡喃葡萄糖基(1→4)-β-D-吡喃半乳糖苷(1)、 6-酮-5α-cholano-22,16-内酯-3-O-β-D-吡喃木糖基-(1→4)-[α-L-吡喃阿拉伯糖基-(1→6)]-β-D-吡喃葡萄糖苷(2)、 (25R)-26-O-β-D-吡喃葡萄糖基-5α-呋喃甾烷-3β,26-二醇-3-O-β-D-吡喃葡萄糖基-(1→2)-[β-D-吡喃葡萄糖基-(1→3)]-β-D-吡喃葡萄糖基(1→4)-β-D-吡喃半乳糖苷(3)、 (25R)-6-酮-26-O-β-D-吡喃葡萄糖基-5α-呋喃甾烷-3β,22α,26-三醇-3-O-α-L-吡喃木糖基-(1→4)-β-D-吡喃葡萄糖苷(4)、 (25R)-6-酮-5α-呋喃甾烷-3β,22α,24β,26-四醇-3-O-β-D-吡喃木糖基-(1→4)-[α-L-吡喃阿拉伯糖基-(1→6)]-β-D-吡喃葡萄糖苷(5)和(25R)-5α-呋甾-2α,3β,22α, 26-四醇-26-O-β-D-吡喃葡萄糖苷(6). 化合物1和2的皂苷元骨架在天然产物中首次分离得到. 选用H2O2诱导PC12细胞神经氧化损伤模型, 初步考察了6种新的呋甾型化合物的抗氧化活性, 实验结果表明, 化合物3对由H2O2诱导的细胞氧化损伤有显著的保护效果.  相似文献   

15.
以有机小分子4,9-二(5-9H-芴-2-基-噻吩-2-基)-6',7-联苯[1,2,5]噻二唑并[3,4-g]喹喔啉(TQF)为前驱体, 通过化学方法将其修饰为可引发可逆加成-断裂链转移聚合(RAFT)反应的小分子链转移剂TQF-苯基硫代链 转移剂(CTA). 以TQF-CTA为链转移剂, 以偶氮二异丁腈为引发剂, 引发N-异丙基丙烯酰胺(NIPAAm)和 甲基丙烯酸寡聚乙二醇酯(OEGMA)发生RAFT聚合反应, 合成了具有良好水溶性和较低临界溶解温度(LCST)的小分子基共聚物[TQF-P(NIPAAm-co-OEGMA), TPNO]. 将其直接溶于水中可制备成温敏的球形纳米粒子 TPNO NPs. 研究结果表明, TPNO NPs在温度大于LCST(35 ℃)时表现出一个明显的粒径变化和显著的荧光 增强行为(2.2倍), 并成功实现了对活体小鼠血管与肿瘤的明亮近红外二区(NIR-Ⅱ)荧光成像(FI). 同时, TPNO NPs有着良好的光热转换效率(PCE=29.8%), 通过体外细胞实验证明了其对细胞具有较好的光热治疗(PTT)效果.  相似文献   

16.
蔡志强  侯旭  张波  刘若灿 《合成化学》2015,23(10):908-912
以3-[(3-氨基-4-甲基氨基苯甲酰)吡啶-2-基氨基]丙酸乙酯为原料,与4-氰基-3-氟苯取代基乙酸经环化反应制得3-【【2-{[(4-氰基-3-氟苯取代基)甲基]-1-甲基-1-H-苯并咪唑-5-基}羰基】吡啶-2-基】氨基丙酸乙酯(3a, 3e); 3经水解和酰胺化反应制得3-【【【2-{[(4-氰基-3-氟苯基)取代基]甲基}-1-甲基-1H-苯并咪唑-5-基】羰基】吡啶-2-基氨基】丙酰取代胺基(6a~6h);6与乙酰氧肟酸经环合反应合成了8个新型的苯并咪唑衍生物(7a~7h),其结构经1H NMR和HR-ESI-MS表征。抗凝血活性结果表明: 7a和7c的抗凝血活性最好,其aPTT值分别为(83.1±4.2) s和(80.7±2.9) s,优于阳性对照药达比加群酯(75.3±2.1)s。  相似文献   

17.
为分析C1~C3正构醛、 醇化合物在质子转移反应飞行时间质谱(PTR-TOF MS)中的产物离子特征, 考察了不同E/N值(E: 电场强度, N: 气体分子数密度)下C1~C3正构醛、 醇的产物离子种类和强度的变化. 结果表明, 低分子量正构醇类(甲醇、 乙醇和丙醇)倾向于形成质子化聚合物[nMH]+及其失水离子[nMH-H2O]+, 且随着E/N值升高, 醇类会产生较多裂解碎片和多聚体离子. 低分子量正构醛(甲醛、 乙醛和丙醛)主要产生质子化产物[MH]+和一水合质子化产物[M·H3O]+, 高E/N值(>125 Td)会抑制甲醛质子化, 也会抑制其加合产物的生成. 乙醛倾向于形成水加合物, 且随着E/N值增高, 质子化乙醛与水合质子化乙醛的变化趋势相反. 另外, 丙醛在较高的E/N值下会产生一系列聚合物, 如[MH·C2H5]+和[2MH]+. 通过分析C1~C3正构醛、 醇的质子转移反应特征及产物离子形成过程, 获得了C1~C3正构醛、 醇的特征离子和对应的最佳E/N设置值, 为低分子量醛、 醇的定性分析提供了重要依据.  相似文献   

18.
利用水热法和直接沉淀法, 设计合成了5例由过渡金属(TM)-联咪唑配阳离子与Dawson型钨磷酸阴离子构成的多金属氧酸盐(POM)基有机-无机杂化化合物[Ni(H2biim)3]4[Ni(H2biim)2(P2W18O62)2]·2H2O(1), [CoIII(H2biim)3]2[P2W18O62]·8H2O(2), [Cu(H2biim)2]3[P2W18O62]·4H2O(3), [CoII(H2biim)3]2H2[P2W18O62]·9H2O(4)和 [Ni(H2biim)3]3[P2W18O62]·2H2O(5); 并利用X射线单晶衍射分析(SC-XRD)、 红外光谱(IR)和热重-差热分析 (TG-DTA)等对其进行了表征. 化合物1~5作为载体用于固定辣根过氧化物酶(HRP)时, 显示出了较高的酶固定化能力. 另外, 利用圆二色光谱(CD)和激光扫描共聚焦显微镜(LSCM)等方法评价了固定化酶HRP/1~HRP/5的重复使用性、 储存稳定性和检测过氧化氢(H2O2)的性能. 由于该类POMs与HRP间存在强的相互作用, 利用简单的物理吸附法即可实现POMs对HRP的固载. POMs对酶的固定不但提高了HRP对使用及储存环境的耐受性, 同时也拓展了POMs在酶固定化领域的应用.  相似文献   

19.
经5步反应制备了萘/苝酰亚胺取代的端炔和碘炔单体, 通过Sonagashira偶联反应合成了2个新型对称丁二炔单体浅黄色粉末2-[4-(4-{4-[7-(庚-3-基)-1,3,6,8-四氧亚基-1,2,3,6,7,8-六氢异喹啉并[6,5,4-def]异喹啉-2-基]苯基}丁-1,3-二炔基)苯基]-7-(辛-4-基)-1,2,3,6,7,8-六氢异喹啉并[6,5,4-def]异喹啉-1,3,6,8-四酮(diNDI)和暗红色粉末2-[4-(4-{4-[1,3,8,10-四氧亚基-9-(二十三烷-12-基)-1,2,3,8,9,10-六氢异喹啉并[6',5',4':9,1,2]蒽并[6,5,10-def]异喹啉-2-基]苯基}丁-1,3-二炔基)苯基]-9-(二十三烷-12-基)-1,2,3,8,9,10-六氢异喹啉并[6',5',4':9,1,2]蒽并 [6,5,10-def]异喹啉-1,3,8,10-四酮(diPDI), 产率分别达60%和70%. 由于NDI和PDI基元的强吸电子作用, diNDI和diPDI表现较低的最低未占分子轨道(LUMO)能级, 分别为?3.80和?3.70 eV. 单晶数据表明, 萘酰亚胺基元的分子间氢键及π-π作用对diNDI分子堆积结构起主导作用, diNDI呈层状堆积模式. 由差示扫描量热(DSC)实验结果可知, diNDI丁二炔经加热可发生固态聚合. 加热条件下diNDI的紫外-可见吸收光谱及原位拉曼光谱特征峰以及在波长532 nm激光强度为10%的辐照条件下原位拉曼光谱特征峰的变化均表明diNDI微纳晶发生了非常规的1,4-加成聚合, 并且新生成的共轭主链是无序的, 同时发现激光辐照条件下更易促进聚合反应.  相似文献   

20.
The dynamics on the multi-photon dissociation of CS2+ molecular ions to produce CS + ions has been investigated by measuring the CS + photofragment excitation(PHOFEX)spectrum in the wavelength range of 385~435 nm,where the CS2+ molecular ions were prepared purely by[3+1]multiphoton ionization of the neutral CS2molecules at 483.2 nm. With the ~60 ns delay,which is much more than the laser pulse width(~5 ns),between ionization laser and dissociation laser,the threshold wavelength of dissociation laser to produce CS+ fragment ion from CS2+ molecular ions was obviously observed in the PHOFEX spectrum. The adiabatic appearance potential of the CS+ was determined to be(5.852 ± 0.005)eV above the X 2Σg,3/2(0,0,0)level of CS2+. The product branching ratios,(CS+/S+),as measured from the PHOFEX spectra,increase from 0 to slightly larger than 1 in the wavenumber range of 47200~50400 cm-1 . The[1+1]dissociation mechanism to get to CS++S from CS2+ was discussed and preliminarily attributed to(i)CS2+(X 2Πg)→ CS2+(A2Πu)through one-photon excitation,(ii)CS2+(A2Πu)→ CS2+(X*)via internal conversion process due to the vibronic coupling between the A and X states,(iii)CS2+(X*)→ CS2+(B 2Σ+u)through the second photon excitation,and(iv)CS2+(B 2Σ+u)→CS +(X 2Σ+)+S(3P),because of the potential curve crossing with the repulsive 4Σ- state and/or the 2Σ- state correlated with the second dissociation limit. However,when the dissociation laser overlaps the ionization laser in time scale in the laser-molecule interaction zone,the appearance threshold is not available in the PHOFEX spectrum. This fact shows that there are other mixed three-photon paths of[1+1+1'],[1+1'+1'],and[1+1'+1]to produce CS+ fragment ion from CS2+ molecular ions besides the above[1+1]dissociation mechanism,that is,CS2+(X 2Πg)→ CS2+(A 2Πu)through one-photon excitation[1]of dissociation laser,CS2+(A 2Πu)→CS2+(X*)via internal conversion process due to the vibronic coupling between the A and X states,CS2+(X*)→ CS2+(B 2Σ +u)through the second photon excitation by dissociation laser[1]or ionization laser[1'],and third photon excitation by ionization laser[1']or dissociation laser[1]to reach the adiabatic appearance potential to produce CS+ with the dissociation laser wavelengths longer than 423. 89 nm,at which the[1+1]dissociation mechanism to get to CS+ is unavailable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号