首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1991年Decher等将带相反电荷的聚电解质 ,于水溶液中交替沉积在片基上 ,制备了多层超薄膜[1] ,这种制膜方法现称为静电自组装 .它操作简单 ,无需专用设备 ;一般在水体系进行 ,对环境友好 ;静电力比范德华力强 ,使它比LB膜稳定 ,所以近年来有很大发展[2 ] .现在自组装成膜驱动力已从静电力扩展到氢键力、电荷转移相互作用、疏水相互作用等 ,用于组装的组分也从聚电解质扩展到多官能团小分子、胶体粒子、无机纳米颗粒 ,DNA、蛋白质等生物大分子等[3~ 11] .虽然自组装膜比LB膜稳定 ,但它也不耐极性溶剂、电解质水溶液等侵蚀 .如…  相似文献   

2.
带相反电荷的聚电解质,交替沉积在基片,形成超薄有序膜,通常称为静电自组装,自1991年由Decher首次阐明以来,静电自组装技术引起了广泛重视,利用氢键相互作用的氢键自组装1997年才有报道,沈家骢、张希等从聚丙烯酸和聚乙烯基吡啶通过氢键组装了有序超薄膜。和乙烯基吡啶通过氢键组装超薄膜的制备。由于静电力和氢键均很弱,此类膜对极性溶剂不稳定,如在DMF中会离解而遭破坏,我们曾报道重氮树脂(DR)与酚醛树脂间通过氢键的自组装,本文报道聚(对乙烯基苯酚)(PVPh)的制备及春与重氮树脂(DR)间的氢键相经作用,并结合光照,制备了对极性溶剂稳定的超薄膜。  相似文献   

3.
自组装超薄膜及其应用   总被引:2,自引:0,他引:2  
自组装膜是指以价键或非价键相互作用在一定表面形成的具有某种特定结构、性能的单层或多层超薄膜。在自然界中 ,人们可以看到许多不同的组分通过自组装形成具有层状超分子结构的复杂体系 ,但直到 1 946年 ,人类才在清洁表面制备了单分子层膜[1] 。与分子束外延和化学气相沉积等制备膜的方法相比 ,以自组装方式形成的超薄膜具有有序性高、平整度好、膜的厚度分子水平可控以及不受基底形状限制等优点[2 ] 。近 1 0多年来 ,随着人们对界面化学研究的深入以及对具有特定功能的薄膜材料的需求 ,使自组装超薄膜的研究成为一个热点。本文从分类、…  相似文献   

4.
高分子通过静电、氢键、电荷转移等的自组装 ,尤其是静电自组装已有大量报道[1] .带重氮基(N+2 )高分子 (重氮树脂 ,DR)自组装的特点是形成组装膜的弱键 ,光照下能转变为共价键 ,不稳定的膜变成稳定的膜[2 ] .乳胶颗粒的组装 ,因胶体晶体、光子晶体的进展 ,越来越受关注[3 ] ,国内也有一些评述文章[4 ,5] .就胶体晶体而言 ,用它作模板 ,几乎能制备包括无机、有机、金属、陶瓷的各种多孔材料 .自然界的蛋白石 (Opals)是SiO2 颗粒有序沉积物中 ,渗入水溶性硅酸盐 ,再在其中固化形成的 .按照自然形成蛋白石的模式 ,从胶体晶体复制 ,…  相似文献   

5.
近几年来,静电自组装成膜材料的合成、薄膜的制备、表征和功能研究已得到了迅速发展^[1-6],但对成膜材料分子结构与薄膜性质间构效关系的研究报道则较少^[6]。杂多化合物具有特殊的结构特征和氧化还原性质,而半菁化合物是备受关注的二阶非线性光学和光电转换材料^[7,8],二者形成的静电自组装薄膜是一类在光、电和催化等众多领域中有着潜在应用前景的纳米材料^[4]。本文报道了3种含磷钼酸根和不同结构的半菁阳离子的静电自组装膜,旨在探索不同阳离子对薄膜性质的影响。  相似文献   

6.
一种新型的氢键自组装液晶光控取向膜   总被引:2,自引:0,他引:2  
报道了一种新型的以氢键为驱动力的液晶自组装光控取向膜, 研究了薄膜的制备方法与光敏特性. 通过聚(4-乙烯基吡啶)中的吡啶基团与光敏聚丙烯酰氧基肉桂酸间的氢键作用制备了LBL(layer-by-layer)型的自组装多层膜, 制备过程的紫外-可见光谱表明, 该组装过程为逐层、均匀沉积过程. 傅里叶变换红外光谱表明, 多层膜的成膜驱动力为氢键. 用线性偏振紫外光辐照该薄膜, 多层膜中与光矢量方向匹配的光敏基团发生[2+2]环加成反应, 形成表面张力各向异性的薄膜. 用该薄膜作为向列相液晶的取向膜制成平行液晶器件, 在偏光显微镜下观察, 发现获得了均一、稳定的取向效果.  相似文献   

7.
近年来 ,自组装及其形成的多层复合膜已经在导电、生物传感器及非线性光学等领域得到深入研究 ,特别是以聚阴离子与聚阳离子相互作用的静电自组装研究更为深入 .这一技术制备方法简单 ,无需特别的设备 ,对膜层厚度能随意调控 ,并以水作为介质 ,对环境无害 [1~ 3] .共轭高分子 (如聚苯胺、聚吡咯及聚苯亚乙烯等 )通过自组装形成共轭高分子膜 ,对制备具有导电、光电和传输等功能的薄膜半导体器件具有重要意义 .聚乙炔类是最早被发现且理论与应用研究最多的一类共轭高分子材料[4 ,5] .本文以聚 ( 4 -羧酸苯基 )乙炔 ( PCPA)为聚阴离子 ,以重…  相似文献   

8.
静电自组装是指将带相反电荷的聚电解质,于水溶液中交替沉积在片基上,制备多层超薄膜的技术.由于它在水溶液进行,技术简单,无需专用设备,再加上静电力比范德华力强,因此静电自组装膜比传统的LB(Langmuir—Blodget)膜稳定,在近年来得到很大发展.现在自组装成膜驱动力已从最初的静电力扩展到氢键、电荷转移相互作用、疏水相互作用等;用于组装的组分也从聚电解质扩展到多官能团小分子、胶体粒子、无机纳米  相似文献   

9.
由于壳聚糖 ( CS)具有抗菌性、抗病毒性、良好的生物相容性、生物降解性以及容易与金属离子螯合等性质 ,被广泛用于重金属回收 [1~ 3] 、药物释放 [4~ 6] 、伤口覆盖[7,8] 、膜分离 [9,10 ] 、日用化工 [11] 等方面 .近年来 ,人们对壳聚糖以及它的化学改性作了大量的研究 [12~ 14 ] .其中通过化学改性形成壳聚糖聚电解质 ,可与带相反电荷的聚电解质通过静电自组装 ( ESA)获得超薄膜 [15~ 18] .本文尝试用壳聚糖( CS)与二苯胺 - 4-重氮树脂磺酸盐 ( DRS)以及二苯胺 - 4-重氮树脂 ( DR)通过 ESA的方法 ,形成具有感光性的超薄膜 .经 …  相似文献   

10.
近年来有序交替的层状纳米结构薄膜的制备吸引了研究者们的极大关注. 目前, 这类薄膜的制备方法研究得最多的是LB技术[1~3]、基于化学吸附的自组装成膜技术[4,5]和交替沉积组装技术[6~8]. 但这几种方法都有明显的缺陷[9,10], 其中,通过LB技术制备有序交替层状纳米复合薄膜需要昂贵的仪器, 而且由于层间是分子相互作用, 膜的稳定性较差; 基于化学吸附的自组装成膜技术由于需要高反应活性的分子和特殊的基底表面, 并且由于化学反应的产率很难达到100%, 因此通过这种方法制备结构有序的多层膜并不容易; 利用交替沉积的方法制备出具有实用厚度的纳米多层膜需要耗费大量的时间. 最近, 出现了一种称为蒸发诱导的超分子自组装方法, 由这种方法制备的纳米多层膜具有成膜速度快和膜有序度高等优点, 此外还可以通过改变成膜物质浓度和拉膜速度来控制薄膜的厚度, 但与LB膜相比其厚度无法在分子水平上控制. 利用这种方法制备多层膜目前的文献报道仅限于线形SiO2与有机物的组装[10~13]. 本文利用这种方法制备了TiO2/十六烷基三甲基溴化铵纳米复合薄膜并对其结构进行了表征, 结果表明所制备的薄膜具有TiO2/十六烷基三甲基溴化铵有序交替的层状结构.  相似文献   

11.
叶芸  蒋亚东 《高分子学报》2009,(11):1091-1095
利用静电自组装方法在石英玻璃表面交替沉积聚二烯丙基二甲基氯化铵(PDDA)和聚偏氟乙烯(PVDF)超薄膜,制得PDDA/PVDF铁电复合超薄膜.通过石英晶体微天平实时监测超薄膜的沉积,研究了超薄膜的表面形貌、结构及电性能.结果表明,自组装每层PVDF超薄膜的厚度为7.5 nm;PDDA/PVDF铁电复合超薄膜的表面平整、均匀,其中C1s的光电子能谱与极化处理后充负电荷的PVDF铁电聚合物一致,但F1s由于溶解再组装过程而降低了0.3 eV;静电自组装材料纳米级的薄膜厚度和聚合物的络合作用导致了铁电复合超薄膜的非晶结构和高的表面电阻率.  相似文献   

12.
功能性超薄有序分子沉积膜的制备及其结构研究   总被引:14,自引:4,他引:14  
1991年G.Decher等首次探讨了阴阳离子与聚电解质交替沉积制备有机超薄膜的方法。我们在完善成膜技术和发展成膜基质的基础上,详细研究了其成膜过程与膜的结构,并定义这种新的自组装超薄有序膜为分子沉积膜——MD膜。MD膜是利用阴阳离子的静电吸附反应特性,通过相反离子体系的交替分子沉积制备的层状有序自组装多层超薄膜。需要指出的是,分子沉积既是有机超薄膜的制备技术,本身又是一种自组装超薄有序膜。MD膜制备工艺简单,热稳定性和长期稳定性好,不受基体形状与面积限制。  相似文献   

13.
光致变色WO3/4,4'-BPPOBp超晶格薄膜的制备   总被引:6,自引:0,他引:6  
具有光致变色和电致变色特性的三氧化钨薄膜因其巨大的应用前景而倍受人们关注[1-4].其制备方法一般为物理沉积方法和化学沉积方法等.其中化学方法包括喷射裂解法[5],化学气相沉积法[6,7],电化学沉积法[8]和溶胶凝胶法[9]等.利用超分子化学自组装技术构建用有机组分调控的光致变色纳米超晶格薄膜材料,是研制光致变色功能薄膜材料的新方法.本文采用溶液中相反电荷聚电解质超分子自组装的方法(PEs法)[10],制备了WO3/4,4′BPPOBp超晶格薄膜.采用紫外可见吸收光谱和小角X射线衍射谱对薄膜的结构和分子的排列方式进行了研究.1 实验…  相似文献   

14.
由聚电解质自组装多层膜制备微孔薄膜   总被引:1,自引:0,他引:1  
带有相反电荷的聚电解质通过静电作用交替沉积可以得到自组装多层膜,由于这种技术可操作性强,用途广泛,近十几年来已有了大量的研究.聚电解质多层膜在一定条件下可以形成纳米孔和微米孔.Fu等研究了聚丙烯酸和聚乙烯基吡啶组成的氢键自组装多层膜在碱溶液中溶去其中的聚丙烯酸后,剩下的聚乙烯基吡啶重构形成微孔薄膜.Mendelsohn等发现将聚丙烯酸和聚烯丙基胺自组装而成的多层膜浸入pH=2.4左右的溶液中可制备微孔薄膜.但这些方法并不能使强聚电解质多层膜形成多孔结构。  相似文献   

15.
采用静电自组装方法在五氧化二钽(Ta2O5)介质氧化膜上制备了聚二烯丙基二甲基氯化铵(PDDA)/聚苯乙烯磺酸钠(PSS)和聚二烯丙基二甲基氯化铵/聚-3,4-乙烯二氧噻吩-聚苯乙烯磺酸钠(PEDOT-PSS)超薄膜.研究了两种自组装超薄膜在Ta2O5介质氧化薄膜上的组装特性.结果表明两种自组装膜能够稳定地组装于Ta2O5介质膜表面,并有效降低薄膜的表面粗糙度.进一步研究了两种自组装超薄膜修饰的Ta2O5电容结构的电性能.结果表明静电自组装膜对Ta2O5介质膜表面进行修饰后,有效地隔离了介质氧化膜中的缺陷,降低了电容的漏电流并提高耐电压能力;研究还发现不同厚度的超薄膜对Ta2O5电容结构的耐压特性有不同程度的影响,较厚的薄膜可以更好地提高电容的耐压能力并降低漏电流,但会增加电容的等效串联电阻(ESR).另外,在相同薄膜层数的情况下,聚合物电解质PEDOT-PSS良好的导电性能降低了复合超薄膜的电阻,使得PDDA/PEDOT-PSS修饰的电容结构ESR值较低.  相似文献   

16.
层层自组装膜的研究:从基础到生物医学领域中的应用   总被引:1,自引:0,他引:1  
层层自组装是利用分子间的静电、氢键、共价键等相互作用将高分子组装成膜的技术,具有操作简单、无需特殊设备、膜组分及厚度可控等优点,在器件制备、表面改性及生物医学等诸多领域有广泛应用。我们在层层自组装膜的基础研究及应用领域均进行了一些探索,首次将氢键和共价键层层组装技术从二维体系扩展到三维体系,成功地制备了氢键和共价键键合的层层组装的空心微胶囊;提出了制备单一组分层层自组装膜的通用办法;对以聚乙烯基吡喏烷酮/聚丙烯酸膜为代表的氢键自组装膜进行了详细研究。首次以可逆共价键-苯硼酸酯键为驱动力进行层层组装,并在这些研究的基础上提出了动态层层自组装膜的概念。利用动态膜逐步解离的特性提出了新的药物释放方法,同时,利用层层自组装水凝胶膜的刺激响应性还提出了新的可快速响应的光学传感方法。  相似文献   

17.
近年来 ,自组装膜的研究不断引起人们重视[1] .一方面 ,其兴趣可能源于纳米级器件的组装 ,如生物传感器等 [2 ] ;另一方面 ,它可作为研究摩擦学 [3]、生物膜模拟 [4 ]和微观浸润性的模型体系 [5] .树枝状分子的结构可在分子水平上精确控制 ,是很有潜力的纳米构筑基元 [6 ] .不同于常规的自组装膜构筑基元 ,树枝状分子的特殊结构使其在金属表面形成某些特殊的组装结构成为可能 .结合界面分子自组装技术和树枝状分子化学 ,国内外已有机构开展了树枝状硫醇的自组装膜的研究[7~ 9] .我们曾发现一种聚醚树枝状硫醇分子在金表面形成的自组装单层…  相似文献   

18.
以对称四甲基六元瓜环(TMeQ[6])为主体,硝酸为客体,在水溶液中自组装形成一个新的主客体包结配合物,通过X-射线单晶衍射技术测试晶体结构.结果表明,1个TMeQ[6]包结1个NO3-,硝酸根离子置于TMeQ[6]空腔,主客体间通过水分子形成氢键发生作用,配合物结构单元之间通过共用水分子连接成一维超分子链,构成硝酸根离子"通道".  相似文献   

19.
在非水介质中制备聚电解质静电吸附自组装膜   总被引:1,自引:0,他引:1  
静电吸附自组装是近年来得到广泛研究和应用的一种制备超薄膜的方法,具有操作简单,膜厚可控等很多优点,已经被广泛应用于制备各种功能薄膜材料[1~4].通常情况下,聚电解质的静电吸附自组装都是在水中进行的.一方面,聚电解质在水中可以很容易的实现电离;另一方面,以水做介质可以避免有机溶剂的污染,尤其对模仿各种生物环境非常有利.所以自1991年Decher首先报道该方法以来,绝大多数的聚电解质静电吸附自组装是以水为介质.但是,以水做介质也常常会遇到一些困难,尤其对于疏水性(包括非水溶性)聚电解质来说.在当前研究的许多热点领域中如导电、发…  相似文献   

20.
Si等 [1] 在压电石英晶体金电极表面先电聚合了一层聚苯胺膜 (PAn) ,再于 PAn膜上电聚合一层聚间苯二胺膜 (Pm PD) ,形成一双层膜 (Pm PD和 PAn) ,而后通过戊二醛共价键合固定化方法 ,实现对生物蛋白质分子的固定和对生物细胞的测定 .但在上述方法中 ,传感器难以再生且蛋白质分子的固定量较少 .参照文献 [2 ],本文提出了一种在电聚合邻苯二胺薄膜上进行可逆的抗体固定化的新方法 .通过控制溶液的 p H值 ,在带正电的电聚合邻苯二胺膜表面先自组装一层聚阴离子聚苯磺酸根 (PSS)层 ,使传感器得到一个带负电的载体表面 ,再通过静电吸附 ,…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号