首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
结合电聚合膜和纳米金自组装技术,提出了一种新的生物分子固定化方法,研制成一种检测抗胰蛋白酶的压电免疫传感器。通过在石英晶振金电极表面电聚合邻苯二胺膜,再在膜表面自组装一层纳米金粒.以静电吸附作用固定抗体(抗原),实现对相应抗原(抗体)的检测。利用扫描电镜技术,从形态上考察了晶振金电极上自组装纳米金后的表面形貌。研究了抗体的固定化条件,探讨了传感器的响应与再生性能结果表日月.这种固定化方法对所固定的生物分子的生物活性影响小,传感器的测定灵敏度高.响应性能和再生性能较好。  相似文献   

2.
以邻苯二胺为功能单体,扑热息痛为模板,采用循环伏安法在玻碳电极表面电聚合形成邻苯二胺电聚合膜,经无水乙醇将模板分子洗脱,制得扑热息痛分子印迹膜电极.通过方波伏安法研究此印迹传感器的分析性能,建立了以K3[Fe(CN)6]为活性电子探针的间接分析法.实验表明,该传感器具有高选择性和灵敏度.在2.0×10-6 ~8.0×1...  相似文献   

3.
基于金属离子螯合的压电免疫传感器新型固定化方法   总被引:1,自引:0,他引:1  
陈媛  吴朝阳  沈国励  俞汝勤 《化学学报》2008,66(12):1455-1459
提出了一种基于金属离子螯合作用的压电免疫传感器新型固定化方法. 先在压电石英晶振表面沉积正丁胺等离子体聚合膜(BA-PPF), 再在BA-PPF表面修饰可与金属离子螯合的氨三乙酸基团, 用金属铜离子活化后, 修饰了二乙三胺五乙酸基团的IgG抗体蛋白质分子即可螯合固定于BA-PPF上. 将固定了抗体的压电石英传感器用于正常人免疫球蛋白IgG (NHIgG)的测定, 其频率响应与NHIgG浓度在0.36~63.8 μg/mL范围内存在良好的线性关系. 这种新型压电免疫传感器固定化方法简单快速, 具有良好的通用性.  相似文献   

4.
一种新的压电免疫传感器中生物分子固定化方法的研究   总被引:11,自引:0,他引:11  
生物分子固定化或传感界面设计技术是研制压电免疫传感器的关键之一。本文 结合自组装单分子膜(SAMs)和聚电解质静电吸附组装技术,提出了一种新的压电 免疫传感器中生物分子固定化方法,研制成一种检测补体C_3的压电免疫传感器。 先在石英晶振的金电极表面组装一层胱胺SAMs,再在膜上组装带相反电荷的聚苯磺 酸钠(PSS)单层膜,通过静电吸附作用固定抗体(抗原),实现对相应抗原(抗 体)的检测。利用扫描电镜技术,从形态上考察了晶振组装胱氨SAMs与PSS及固定 补体C_3抗体后的表面形貌。研究了抗体的固定化条件,探讨了传感器采用这种固 定化方法的响应与再生性能,并与戊二醛键合固定法进行比较。结果表明,这种固 定化方法不仅对蛋白质类生物分子的固定化具有普适性,而且对所固定的生物分子 的活性影响小,传感器的响应的频移值大,灵敏度高,选择性和再生性能均较好。  相似文献   

5.
高分子膜作为一项新兴技术,在很多领域得到日益广泛的应用.近十几年,随着生物工程和生物传感器的迅速发展,高分子生物功能膜的研究倍受重视.高分子生物功能膜是采用固定化技术,将具有分子识别功能的材料(如酶、抗原、抗体等)固定在高分子膜上而制得的.在固定化膜表面发生的生物化学反应,可以引起膜的荷电状态的变化,从而导致跨膜电位的变化。有关固定化膜的报导较多,但主要限于固定化的方法及其应用方面的研究,而有关高分  相似文献   

6.
邻苯二胺电聚合膜己广泛用于生物活性物质固定、电催化、腐蚀防护和电色材料研究,近期也用于制备分子印迹型化学/生物传感器[1,2]。人们已经研究了聚邻苯二胺的结构特性、性能及应用前景[3,4,5]。目前聚合物基纳米复合材料的制备方法主要有:分子自组装法、微乳液聚合法、电化学  相似文献   

7.
以辣根过氧化物酶(HRP)为蛋白质模板分子, 邻苯二胺(o-PD)为聚合单体, 首先将预先羧基化的多壁碳纳米管(MWCNTs)通过阶跃电位法电沉积在玻碳电极上作为增敏材料, 然后在该电极上电聚合含HRP的邻苯二胺电沉积液形成一层聚合膜, 去除模板化合物后, 制得对HRP具有特异性识别能力的分子印迹聚合物(MIPs)膜; 利用聚邻苯二胺(POPD)的自探针效应构建了分子印迹电化学传感器. 该传感器的响应电流与HRP浓度在1.0×10 -10~1.0×10 -5 mg/mL范围内有良好的线性关系, 相关系数为0.991, 检出限为1.5×10 -11 mg/mL(S/N=3); 该传感器的响应电流与H2O2浓度在4.0×10 -7~1.4×10 -5 mol/L范围内有良好的线性响应, 相关系数为0.992, 检出限为2.6×10 -7 mol/L(S/N=3), 将该传感器用于实际样品H2O2的检测, 回收率在91.2%~97.1%之间. 建立了基于MIPs膜的HRP和H2O2双分析物传感器的制备方法, 该方法可应用于酶及其酶促底物双分析物传感器.  相似文献   

8.
三氯生分子印迹传感器的制备及其性能研究   总被引:1,自引:0,他引:1  
应用分子印迹技术, 以邻苯二胺为功能单体、三氯生为模板, 用循环伏安法在玻碳电极表面合成了性能稳定的三氯生分子印迹聚合膜, 并用方波伏安法对此印迹传感器进行了分析应用研究.  相似文献   

9.
碳纳米管修饰电极分子印迹传感器快速测定沙丁胺醇   总被引:1,自引:0,他引:1  
齐玉冰  刘瑛  宋启军 《分析化学》2011,39(7):1053-1057
以单壁碳纳米管(SWNTs)为电极材料,应用分子印迹技术,以邻苯二胺为功能单体、沙丁胺醇为模板,采用电化学聚合法制备了一种新型的快速检测沙丁胺醇分子印迹传感器,并运用电化学方法去除模板.在磷酸盐缓冲溶液(PBS)中,利用线性溶出伏安法对印迹和非印迹膜的性能进行了比较,对分子印迹膜的影响因素进行了优化.实验表明,本传感器...  相似文献   

10.
以玻碳电极为基底,电聚合一层表面均匀的带正电性的聚天青Ⅰ膜,再通过静电作用吸附一层带负电性的具有大比表面积的纳米硫化镉来固定纳米金和辣根过氧化物酶(HRP)的复合物,制备出性能良好的过氧化氢生物传感器.采用循环伏安法(CV)和计时电流法对该生物传感器的性能进行了研究.试验表明:该方法不仅增加了酶的吸附量,还有效保持了酶的生物催化活性,此生物传感器对过氧化氢浓度在4.0×10-7~1.2×10-3mol·L-1范围内呈线性关系,检出限为1.4×10-7mol·L-1.  相似文献   

11.
等离子体聚合膜 ( Plasma- polymerized film)是由有机蒸气在辉光放电下聚合而成 ,这种高度交联的膜具有均匀、超薄、附着力强、化学稳定、机械性能良好、基质类型多样以及成膜有机物品种多样等优点 ,因此已引起了传感器工作者的兴趣 ,目前 ,所研制的传感器已用于有机气体的测定 [1 ,2 ] .Karube小组报道了乙烯二胺等离子体聚合膜在免疫传感器方面的应用[3,4] .但由于抗体直接共价键合于等离子体聚合膜上 ,无法洗脱 ,使等离子体聚合膜修饰的传感器不能再生 ,而不同批次沉积的等离子体聚合膜其交联度、活性基团含量等又难以一致 ,严重影响了…  相似文献   

12.
Balkenhohl T  Lisdat F 《The Analyst》2007,132(4):314-322
An immunosensor has been developed for the detection of autoantibodies directed against wheat gliadin, a protein fraction of cereal gluten which is involved in celiac disease. The immunosensor is based on the immobilization of gliadins onto gold electrodes covered with a polyelectrolyte layer of poly(4-styrenesulfonic acid sodium salt). The immobilization was monitored by quartz crystal microbalance (QCM) analysis. The antigen-antibody interaction signal was amplified by an incubation step with peroxidase-labeled immunoglobulins and subsequent peroxidase-catalyzed oxidation of 3-amino-9-ethylcarbazole (AEC). Changes in the insulating properties of the electrode layer were measured by electrochemical impedance spectroscopy (EIS) in the presence of ferri/ferro-cyanide. Impedance spectra could be fitted to a Randles equivalent circuit with high accuracy. Exposing the sensor electrodes to various antigliadin antibody concentrations resulted in proportional changes in the charge transfer resistance. A calibration graph for the detection of antigliadin antibodies was established for antibody concentrations between 10(-8) and 10(-6) M. Finally, the sensor was used for the determination of antigliadin autoantibodies of the IgG and IgA type in several human sera.  相似文献   

13.
An electrochemical label-free immunosensor based on a biotinylated single-chain variable fragment (Sc-Fv) antibody immobilized on copolypyrrole film is described. An efficient immunosensor device formed by immobilization of a biotinylated single-chain antibody on an electropolymerized copolymer film of polypyrrole using biotin/streptavidin system has been demonstrated for the first time. The response of the biosensor toward antigen detection was monitored by surface plasmon resonance (SPR) and electrochemical analysis of the polypyrrole response by differential pulse voltammetry (DPV). The composition of the copolymer formed from a mixture of pyrrole (py) as spacer and a pyrrole bearing a N-hydroxyphthalimidyl ester group on its 3-position (pyNHP), acting as agent linker for biomolecule immobilization, was optimized for an efficient immunosensor device. The ratio of py:pyNHP for copolymer formation was studied with respect to the antibody immobilization and antigen detection. SPR was employed to monitor in real time the electropolymerization process as well as the step-by-step construction of the biosensor. FT-IR demonstrates the chemical copolymer composition and the efficiency of the covalent attachment of biomolecules. The film morphology was analyzed by electron scanning microscopy (SEM).Results show that a well organized layer is obtained after Sc-Fv antibody immobilization thanks to the copolymer composition defined with optimized pyrrole and functionalized pyrrole leading to high and intense redox signal of the polypyrrole layer obtained by the DPV method. Detection of specific antigen was demonstrated by both SPR and DPV, and a low concentration of 1 pg mL−1 was detected by measuring the variation of the redox signal of polypyrrole.  相似文献   

14.
Lee YG  Chang KS 《Talanta》2005,65(5):1335-1342
Bovine ephemeral fever (BEF) is a viral disease of cattle. A flow type quartz crystal microbalance (QCM) immunosensor was developed for the real time determination BEF virus (BEFV) that is suitable for clinical point-case diagnosis. Self-assembled monolayer (SAM) of thiols and sulphides by the cystamine–glutaraldehyde method was used for the immobilization of BEFV monoclonal antibody on the gold surface of a quartz crystal microbalance (QCM). A positive correlation was found between the virus concentration and frequency changes (R2 = 0.9962) on this QCM system. The reproducible rates for the 50 and 10 μg/mL samples were 4 and 13.9%, respectively. There was no interference from non-specifically adsorbed phage. Using this flow type QCM immunosensor, BEFV could specifically be detected with sensitivity comparable to a conventional enzyme-linked immunosorbent assay (ELISA). The measurement could be obtained directly, within several minutes, rather than hours as required visualizing the results of ELISA. In addition, the observation of reproducible and constant changes after successive additions of BEFV suggests that a QCM immunosensor in a flow cell could be developed for automated or continuous real time operation.  相似文献   

15.
A regenerable, labelless electrochemical immunosensor is investigated. In this work, pyrrole (Py) and pyrrole propylic acid (Pa) were co‐electropolymerized in the presence of gold nanoparticles to form a porous, conductive, stable and hydrophilic nanocomposite, followed by the covalent attachment of protein G to capture an antibody as the probe for the immunoassay. The regeneration of the sensor was achieved by rinsing the electrodes with 0.1 M glycine buffer (pH 2.7). The binding and dissociation of the antibody with protein G and optimization of the efficient immobilization were studied by impedance and optical measurements, respectively. The charge transfer resistance obtained from the impedance measurements is used to study the interaction between antibody‐protein G and antibody‐antigen. The immunosensor performance and its regenerability were evaluated by using anti‐leptin IgG as the probe protein to detect leptin in 0.01 M PBS, and its specificity was tested in 1% human serum. The leptin impedimetric immunosensor exhibits a detection dynamic range of 10–100 000 ng/mL with 10 ng/mL detection limit in 0.01 M PBS+1% serum solutions. This work proves the feasibility to make a sensitive, regenerative electrochemical immunosensor, which could be very useful for environmental control and food analysis.  相似文献   

16.
通过电聚合制得新型聚钙羧酸修饰电极并用于构建检测甲胎蛋白(AFP)的高灵敏电化学免疫传感器. 采用扫描电镜(SEM)、电化学交流阻抗(EIS)观察、表征修饰电极和AFP单克隆抗体(Ab1)固定前后的差异. 固定Ab1的电极与一定浓度的AFP、辣根过氧化物酶联AFP单克隆抗体(HRP-Ab2)反应,形成夹心型免疫复合物. 辣根过氧化物酶(HRP)催化3,3',5,5'-四甲基联苯胺(TMB)底物产生电流信号,实现AFP浓度的测定. 本检测方法灵敏度高,重现性好.  相似文献   

17.
A novel biosensing interfacial design strategy has been produced by the alternate adsorption of the oppositely charged polyelectrolytes. A quartz-crystal microbalance (QCM) as a model transducer was modified by use of mercaptoacetic acid (MAA) self-assembled monolayer (SAM) and the adsorption multilayers of the oppositely charged polyelectrolytes. MAA-SAM was first applied to the gold electrode surface of the crystal, and the positively charged chitosan was used as a double-sided linker to attach the negatively charged alginate-HSA antibodies to the negatively charged MAA-SAM layer. The assembly process and conditions were studied using the real-time output device and the surface topologies of the resulting crystals were characterized by atomic force microscopy (AFM) imaging. It is discovered that the optimal pH of immobilizing antibodies was 7.2 and the suited dilution ratio of antibodies was 10:30. The proposed immunosensor in optimal conditions has a linear detection range of 12.3-184.5 μg/mL for HSA detection. Comparing with the direct immobilization method of antibodies, the immunosensor with the proposed immobilization procedure shows some advantages, such as improved sensitivity due to the well-retained antibody activity and the significantly extended detection range. In particular, the regeneration of the developed immunosensor was simple and fast. Analytical results indicate that the developed immobilization procedure is a promising alternative for the immobilization of biorecognition element on the electrode surface.  相似文献   

18.
《Analytical letters》2012,45(9):1809-1821
Abstract

In the development of electrochemical immunosensing strategies, stability or activity of the immobilized biocomponents and signal amplification of the immunoconjugates are two key factors. In this study, a comparative study of immunoglobulin G antibody (anti‐IgG) immobilization, as a model, was performed on cysteine (Cys), 2‐aminoethane thiol (AET), and 11‐mercaptoundecanoic acid (MUA) monolayers. The change of anti‐IgG layer formation on the three base layers as a function of the anti‐IgG concentration was investigated in parallel via electrochemical impedance spectroscopy, cyclic voltammetry, surface plasmon resonance, and quartz crystal microbalance. Through the parallel measurements, we demonstrate that the Cys‐modified layer is more suitable for the immobilization of the anti‐IgG molecules than the MUA or AET‐modified layer. Based on the CV and EIS analyses, it was determined that the current responses decreased with the increment of anti‐IgG concentration, while the resistance responses increased with the concentration of anti‐IgG increased. Moreover, the current and resistance shifts were more remarkable on the Cys layer than that of the other two layers. In the SPR and QCM measurements, the SPR and QCM response signals were similar in shape but differing in time scales, reflecting differences in detection mechanisms. With regard to the fundamental problem of comparing different measurement principles, the mechanism of the IgG immobilized on the three layers was proposed. Consequently, the surface concentration of anti‐IgG immobilized on the electrode should be optimized to improve the sensitivity of the immunosensors.  相似文献   

19.
A piezoelectric immunosensor based on an improved immobilization strategy combining self-assembled monolayers (SAM) of cystamine (Cys) and polystyrene sulfonate (PSS) has been developed for the determination of Schistosoma japonicum antibodies (SjAb) in rabbit serum. Cys SAM were first applied to the gold electrode surface of the crystal, serving as a positively-charged base. Schistosoma japonicum antigen (SjAg) was then electrostatically immobilized on the crystal by means of a negatively-charged PSS layer. When sealed by use of an appropriately selected blocking reagent for BSA and normal rabbit serum (NRS), non-specific adsorption could be substantially reduced.The immunosensor was used to determine SjAb in optimized buffer medium with addition of poly(ethylene glycol) (PEG), which served as an immunoreaction enhancer. It was shown experimentally that SjAg immobilized by the Cys-PSS adsorption procedure had higher immunological activity or binding efficiency than those immobilized by the glutaraldehyde (GLU) binding or direct attachment procedures. The immunosensor developed had satisfactory sensitivity and detection limit, and regeneration of the piezoelectric quartz-crystal was easy. Analytical results obtained with infected rabbit serum samples indicated that the proposed immunosensor is a promising alternative for qualitative and quantitative determination of SjAb in clinical diagnosis of infection with Schistosoma japonicum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号