首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS) are powerful optical scattering techniques used in such frontier areas of research as ultrasensitive chemical analysis, the characterization of nanostructures, and the detection of single molecules. However, measuring and, most importantly, interpreting SERS/SERRS spectra can be incredibly challenging. This is the result of modifications to the measured spectra that are due to of a variety of instabilities and contributions. These interferences and modifications arise from the nature of the enhancement itself, as well as the conditions used to attain SERS spectra. The present report is an attempt to collect in one place the analytical interferences that are most commonly found during the collection of SERS/SERRS spectra.  相似文献   

2.
This communication presents a new pathway for the more precise quantification of surface-enhanced Raman scattering (SERS) enhancement factor via deducing resonance Raman scattering (RRS) effect from surface-enhanced resonance Raman scattering (SERRS). To achieve this, a self-assembled monolayer of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4α-CoIITAPc) is formed on plasmon inactive glassy carbon (GC) and plasmon active GC/AuNP surface. The surfaces are subsequently used as common probes for electrochemical and Raman (RRS and SERRS) studies. The most crucial parameters required for the quantification of SERS substrate enhancement factor (SSEF) such as real surface area of GC/AuNPs substarte and the number of 4α-CoIITAPc molecules contributing to RRS (on GC) and SERRS (on GC/AuNPs) are precisely estimated by cyclic voltammetry experiments. The present approach of SSEF quantification can be applied to varieties of surfaces by choosing an appropriate laser line and probe molecule for each surface.  相似文献   

3.
Sensitive and detailed molecular structural information plays an increasing role in molecular biophysics and molecular medicine. Therefore, vibrational spectroscopic techniques, such as Raman scattering, which provide high structural information content are of growing interest in biophysical and biomedical research. Raman spectroscopy can be revolutionized when the inelastic scattering process takes place in the very close vicinity of metal nanostructures. Under these conditions, strongly increased Raman signals can be obtained due to resonances between optical fields and the collective oscillations of the free electrons in the metal. This effect of surface-enhanced Raman scattering (SERS) allows us to push vibrational spectroscopy to new limits in detection sensitivity, lateral resolution, and molecular structural selectivity. This opens up exciting perspectives also in molecular biospectroscopy. This article highlights three directions where SERS can offer interesting new capabilities. This includes SERS as a technique for detecting and tracking a single molecule, a SERS-based nanosensor for probing the chemical composition and the pH value in a live cell, and the effect of so-called surface-enhanced Raman optical activity, which provides information on the chiral organization of molecules on surfaces.  相似文献   

4.
We investigated the optical properties of isolated single aggregates of Ag nanoparticles (Ag nanoaggregates) on which rhodamine 6G molecules were adsorbed to reveal experimentally a correlation among plasmon resonance Rayleigh scattering, surface-enhanced resonance Raman scattering (SERRS), and its background light emission. From the lack of excitation-laser energy dependence of background emission maxima we concluded that the background emission is luminescence, not Raman scattering. The polarization dependence of both SERRS and background emission was the same as that of the lowest-energy plasmon resonance maxima, which is associated with a longitudinal plasmon. From the common polarization dependence, we identified that the lowest-energy plasmon is coupled with both SERRS and background emission. In addition, we revealed that the lowest-energy plasmon with a higher quality factor (Q factor) yields larger SERRS and background emission intensity. Also, we identified that the Q factor dependence of the SERRS intensity was similar to that of the background emission intensity. This similarity directly supported us to demonstrate an enhancement of both SERRS and background emission by coupling with a common plasmon radiative mode.  相似文献   

5.
Reproducible detection of a target molecule is demonstrated using temporally stable solution-phase silica-void-gold nanoparticles and surface-enhanced Raman scattering (SERS). These composite nanostructures are homogeneous (diameter = 45 +/- 4 nm) and entrap single 13 nm gold nanoparticle cores inside porous silica membranes which prevent electromagnetic coupling and aggregation between adjacent nanoparticles. The optical properties of the gold nanoparticle cores and structural changes of the composite nanostructures are characterized using extinction spectroscopy and transmission electron microscopy, respectively, and both techniques are used to monitor the formation of the silica membrane. The resulting nanostructures exhibit temporally stable optical properties in the presence of salt and 2-naphthalenethiol. Similar SERS spectral features are observed when 2-naphthalenethiol is incubated with both bare and membrane-encapsulated gold nanoparticles. Disappearance of the S-H Raman vibrational band centered at 2566 cm(-1) with the composite nanoparticles indicates that the target molecule is binding directly to the metal surface. Furthermore, these nanostructures exhibit reproducible SERS signals for at least a 2 h period. This first demonstration of utilizing solution-phase silica-void-gold nanoparticles as reproducible SERS substrates will allow for future fundamental studies in understanding the mechanisms of SERS using solution-phase nanostructures as well as for applications that involve the direct and reproducible detection of biological and environmental molecules.  相似文献   

6.
Random parallel nanostructures (ridges and channels) were created by scratching gold thin films deposited on glass slides. Atomic force microscope (AFM) images showed that the width of the substructures within the scratches were of the order of a few hundred nanometers. These nanometric gold features can then support localized surface plasmon resonances in the direction perpendicular to the propagation of the scratches. This surface plasmon excitation led to a remarkable dependence of the intensity of the surface-enhanced resonance Raman scattering (SERRS) on the polarization direction of the incident light relative to the orientation of the scratch. The maximum SERRS intensities for oxazine 720 (a common laser dye) adsorbed on these nanostructures were obtained when the polarization of the light field was perpendicular to the direction of the substructures. The SERRS intensities followed a squared dependence on the polarization direction of the incident field.  相似文献   

7.
Cellular heterogeneity presents a major challenge in understanding the relationship between cells of particular genotype and response in disease. In order to characterize the cell-to-cell differences during the biochemical processes, single-cell analysis is necessary. Profiting from the unique localized surface plasmon resonance (LSPR) and Mie scattering, plasmonic nanostructures have revealed stable and adjustable scattering signals, avoiding photobleaching, blinking and autofluorescence phenomenon. These characterizations are propitious to the dynamic trace and biological image of single living cells. In this review, we discuss the recent advances in plasmonic nanostructures applied for label-free detection and monitoring of target cells at single-cell level by using three different techniques, surface-enhanced Raman scattering (SERS), surface-enhanced Infrared absorption spectroscopy (SEIRAS), and dark-field microscopy. Various avenues to design plasmonic probes combining spectra and imaging for single-cell analysis are demonstrated as well. We hope this review can highlight the superiority of plasmonic nanostructures in single cellular analysis, and further motivate the development of label-free cell analysis technique to elucidate cellular diversity and heterogeneity.  相似文献   

8.
A four step Ag foil laser ablation-Ag nanoparticle fragmentation procedure in ultrapure water was carried out both under argon and in air. Pulses of a high power Nd/YAG laser were used for laser ablation (1064 nm) and for the three step Ag hydrosol treatment in the absence of Ag foil in the sequence 1064-532-1064 nm. Transmission electron microscopy (TEM) and surface plasmon (SP) extinction spectra provide evidence of Ag nanoparticle fragmentation in the second and third step of the procedure carried out under argon. While polydispersity of Ag hydrosol increases in the second step, both the polydispersity and the mean size of the nanoparticles are reduced in the third step. Qualitative and quantitative surface-enhanced Raman scattering (SERS)/surface-enhanced resonance Raman scattering (SERRS) spectral probing of systems with Ag hydrosols and the selected adsorbates at 514.5 nm excitation shows that Ag hydrosols obtained in the second step of the preparation procedure carried out in air are the most suitable substrates for SERS/SERRS experiments performed at this excitation wavelength.  相似文献   

9.
Metallic substrates with ordered spherical cavities have been shown to be very effective for surface-enhanced Raman scattering (SERS) and can be fabricated reproducibly using electrodeposition. The sensitivity of detection is increased by several orders of magnitude by using surface-enhanced resonance Raman scattering (SERRS). In this report we demonstrate SERRS for the first time on electrodeposited gold films templated with colloidal spheres and demonstrate the reproducibility of the response. We also obtain a direct comparison between SERRS and SERS by choosing two dyes, Cy5 and Cy3, which are similar in structure but differ in their excitation maxima, such that one is resonant and the other non-resonant with our laser excitation. As expected, the resonant enhancement is found to be of the order of 10(3) over and above that for SERS. The net SERRS enhancements are shown to be of the order of 10(9). We also find that the resonant enhancement profile of the different peaks for the chromophore follows the plasmonic resonance absorption spectrum obtained for the structured surface.  相似文献   

10.
We report the ultrasensitive detection of adenine using deep-UV surface-enhanced resonance Raman scattering on aluminum nanostructures. Well-defined Al nanoparticle arrays fabricated over large areas using extreme-UV interference lithography exhibited sharp and tunable plasmon resonances in the UV and deep-UV wavelength ranges. Theoretical modeling based on the finite-difference time-domain method was used to understand the near-field and far-field optical properties of the nanoparticle arrays. Raman measurements were performed on adenine molecules coated uniformly on the Al nanoparticle arrays at a laser excitation wavelength of 257.2 nm. With this technique, less than 10 amol of label-free adenine molecules could be detected reproducibly in real time. Zeptomole (~30,000 molecules) detection sensitivity was readily achieved proving that deep-UV surface-enhanced resonance Raman scattering is an extremely sensitive tool for the detection of biomolecules.  相似文献   

11.
Surface plasmon resonance (SPR) can provide a remarkably enhanced electromagetic field around metal surface. It is one of the enhancement models for explaining surface-enhanced Raman scattering (SERS) phonomenon. With the development of SERS theories and techniques, more and more studies referred to the configurations of the optical devices for coupling the excitation and radiation of SERS, including the prism-coupling, waveguide-coupling, and grating-coupling modes. In this review, we will summarize the recent experimental improvements on the surface plasmoncoupled SERS.  相似文献   

12.
Surface-enhanced Raman scattering on colloidal nanostructures   总被引:1,自引:0,他引:1  
Surface-enhanced Raman scattering combines extremely high sensitivity, due to enhanced Raman cross-sections comparable or even better than fluorescence, with the observation of vibrational spectra of adsorbed species, providing one of the most incisive analytical methods for chemical and biochemical detection and analysis. SERS spectra are observed from a molecule-nanostructure enhancing system. This symbiosis molecule-nanostructure is a fertile ground for theoretical developments and a realm of applications from single molecule detection to biomedical diagnostic and techniques for nanostructure characterization.  相似文献   

13.
Xu BB  Ma ZC  Wang H  Liu XQ  Zhang YL  Zhang XL  Zhang R  Jiang HB  Sun HB 《Electrophoresis》2011,32(23):3378-3384
A surface-enhanced Raman scattering (SERS)-active microfluidic device with tunable surface plasmon resonances is presented here. It is constructed by silver grating substrates prepared by two-beam laser interference of photoresists and subsequent metal evaporation coating, as well as PDMS microchannel derived from soft lithography. By varying the period of gratings from 200 to 550 nm, surface plasmon resonances (SPRs) from the metal gratings could be tuned in a certain range. When the SPRs match with the Raman excitation line, the highest enhancement factor of 2×10(7) is achieved in the SERS detection. The SERS-active microchannel with tunable SPRs exhibits both high enhancement factor and reproducibility of SERS signals, and thus holds great promise for applications of on-chip SERS detection.  相似文献   

14.
By considering the molecule and metal to form a conjoined system, we derive an expression for the observed Raman spectrum in surface-enhanced Raman scattering. The metal levels are considered to consist of a continuum with levels filled up to the Fermi level, and empty above, while the molecule has discrete levels filled up to the highest occupied orbital, and empty above that. It is presumed that the Fermi level of the metal lies between the highest filled and the lowest unfilled level of the molecule. The molecule levels are then coupled to the metal continuum both in the filled and unfilled levels, and using the solutions to this problem provided by Fano, we derive an expression for the transition amplitude between the ground stationary state and some excited stationary state of the molecule-metal system. It is shown that three resonances contribute to the overall enhancement; namely, the surface plasmon resonance, the molecular resonances, as well as charge-transfer resonances between the molecule and metal. Furthermore, these resonances are linked by terms in the numerator, which result in SERS selection rules. These linked resonances cannot be separated, accounting for many of the observed SERS phenomena. The molecule-metal coupling is interpreted in terms of a deformation potential which is compared to the Herzberg-Teller vibronic coupling constant. We show that one term in the sum involves coupling between the surface plasmon transition dipole and the molecular transition dipole. They are coupled through the deformation potential connecting to charge-transfer states. Another term is shown to involve coupling between the charge-transfer transition and the molecular transition dipoles. These are coupled by the deformation potential connecting to plasmon resonance states. By applying the selection rules to the cases of dimer and trimer nanoparticles we show that the SERS spectrum can vary considerably with excitation wavelength, depending on which plasmon and/or charge-transfer resonance is excited.  相似文献   

15.
帽状金纳米结构的制备、表征及表面增强拉曼散射活性   总被引:1,自引:0,他引:1  
采用真空离子溅射法在自组装的单层阵列二氧化硅纳米粒子表面沉积金薄膜, 制备了以SiO2为核的帽状金纳米结构. 用透射电镜、扫描电镜、原子力显微镜、X 射线衍射仪和紫外-可见-近红外分光光度计对样品的表面形貌、结构及光学性质进行了表征. 以亚甲基蓝作为探针分子, 对金纳米帽的表面增强拉曼散射活性进行了研究, 结果显示, 吸附在金纳米帽上的分子拉曼散射信号得到显著增强, 增强因子达到107数量级. 该基底在超灵敏生物和化学检测方面具有潜在的应用前景.  相似文献   

16.
We investigated the chemisorption of self-assembled monolayers of sulfur-functionalized 4-amino-7-nitrobenzofurazan on gold and silver nanoisland films (NIFs) by means of surface-enhanced fluorescence (SEF) and surface-enhanced Raman scattering (SERS). The ligand is a push–pull molecule, where an intramolecular charge transfer occurs between an electron-donor and an electron-acceptor group, thus exhibiting nonlinear optical properties that are related to both SERS and SEF effects. The presence of different heteroatoms in the molecule ensures the possibility of chemical interaction with both silver and gold substrates. The SERS spectra suggest that furazan is bound to silver via lone pairs of the nitrogen atoms, whereas the ligand is linked to gold via a sulfur atom. Silver NIFs provide more efficient enhancement of both fluorescence and Raman scattering in comparison with gold NIFs. The present SEF and SERS investigation could provide useful information for foreseeing changes in the nonlinear responses of this push–pull molecule.  相似文献   

17.
This paper reports the synthesis and characterization of surface-enhanced Raman scattering (SERS) label-tagged gold nanostars, coated with a silica shell containing methylene blue photosensitizing drug for singlet-oxygen generation. To our knowledge, this is the first report of nanocomposites possessing a combined capability for SERS detection and singlet-oxygen generation for photodynamic therapy. The gold nanostars were tuned for maximal absorption in the near-infrared (NIR) spectral region and tagged with a NIR dye for surface-enhanced resonance Raman scattering (SERRS). Silica coating was used to encapsulate the photosensitizer methylene blue in a shell around the nanoparticles. Upon 785 nm excitation, SERS from the Raman dye is observed, while excitation at 633 nm shows fluorescence from methylene blue. Methylene-blue-encapsulated nanoparticles show a significant increase in singlet-oxygen generation as compared to nanoparticles synthesized without methylene blue. This increased singlet-oxygen generation shows a cytotoxic effect on BT549 breast cancer cells upon laser irradiation. The combination of SERS detection (diagnostic) and singlet-oxygen generation (therapeutic) into a single platform provides a potential theranostic agent.  相似文献   

18.
One‐dimensional iron oxide materials fabricated on conducting glass substrates and their unique properties make these nanostructures promising candidates for a wide range of applications. Herein, vertically oriented α‐Fe2O3 nanorod arrays synthesized under hydrothermal conditions over a large area are described, as an active platform for surface‐enhanced resonance Raman scattering (SERRS) and surface‐enhanced fluorescence (SEF). From scanning electron microscopy images the formation of a homogeneous distribution of vertically oriented rods in a large area is confirmed. For activating the localized surface plasmon resonances, which are responsible for SERRS and SEF, a 6 nm layer of Ag is deposited onto the α‐Fe2O3 nanorod arrays by physical vapor deposition to form Ag islands.  相似文献   

19.
The Langmuir-Blodgett (LB) monolayer technique was used to fabricate single molecule LB monolayer containing bis(phenethylimido)perylene (PhPTCD), a red dye dispersed in arachidic acid (AA) with an average doping of 1 molecule per microm2. The monolayer was transferred onto Ag island films to obtain spatially resolved surface-enhanced resonance Raman scattering (SERRS) spectra. The mixed LB monolayers were fabricated with a concentration, on average, of 1, 6, 19 and 118 PhPTCD molecules per microm2 in AA. The AA provides a two-dimensional host matrix whose background signal does not interfere with the detection of the probe molecule's SERRS signal. The properties of the single molecule detection were investigated using micro-Raman with a 514.5-nm laser line. The Ag island surfaces coated with the LB monolayer were mapped with spatial steps of 3 microm and global chemical imaging of the most intense SERRS band in the spectrum was also recorded. The SERRS and surface-enhanced fluorescence (SEF) of the neat and single molecule LB monolayer were recorded in a temperature range from liquid nitrogen to + 200 degrees C. Neat PhPTCD LB monolayer spectra served as reference for the identification of characteristic signatures of the single molecule behavior. The spatial resolution of Raman-microscopy experiments, the multiplicative effect of resonance Raman and SERRS, and the high sensitivity of the new dispersive Raman instruments, allow SERRS to be part of the family of single molecular spectroscopies.  相似文献   

20.
Surface‐enhanced Raman spectroscopy (SERS) is an attractive tool for the sensing of molecules in the fields of chemical and biochemical analysis as it enables the sensitive detection of molecular fingerprint information even at the single‐molecule level. In addition to traditional coinage metals in SERS analysis, recent research on noble‐metal‐free materials has also yielded highly sensitive SERS activity. This Minireview presents the recent development of noble‐metal‐free materials as SERS substrates and their potential applications, especially semiconductors and emerging graphene‐based nanostructures. Rather than providing an exhaustive review of this field, possible contributions from semiconductor substrates, characteristics of graphene enhanced Raman scattering, as well as effect factors such as surface plasmon resonance, structure and defects of the nanostructures that are considered essential for SERS activity are emphasized. The intention is to illustrate, through these examples, that the promise of noble‐metal‐free materials for enhancing detection sensitivity can further fuel the development of SERS‐related applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号