首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
采用两步法合成了sod基系列分子筛(EMT、FAU、SOD),并通过离子交换法引入Ag+得到载银分子筛,通过X射线衍射(XRD)、扫描电子显微镜(SEM)证明离子交换前后分子筛骨架结构和晶粒尺寸没有发生明显变化;通过红外光谱(IR)、热重(TG)证明制得的载银分子筛具有良好的稳定性;对获得的载银分子筛进行了Ag+释放实验与抗菌能力测试,考察了分子筛种类和晶粒尺寸对抗菌性能的影响。结果表明具有笼状结构的FAU与EMT分子筛因可储存更多的Ag+而具有更好的抗菌性能,而具有超笼结构的FAU分子筛抗菌性能最优。通过对比不同晶粒尺寸载银FAU分子筛抗菌数据发现,晶粒尺寸为100 nm的载银FAU分子筛因外表面丰富的抗菌活性位点以及其内部可以储存并不断释放Ag+而具有最优的抗菌性能和抗菌寿命。而晶粒尺寸为10 nm的载银FAU分子筛由于晶粒尺寸较小、外比表面积大、扩散路径短,Ag+的释放速率最快,抗菌效率最高。  相似文献   

2.
采用水热法一步合成载银羟基磷灰石抗菌粉体(Ag-HA),并将其应用于抗菌陶瓷的制备。研究结果表明水热条件下HA实际载银量与AgNO3加入量存在较好的线性关系。XRD和TEM分析结果显示Ag-HA与HA具有相同的晶体结构,水热条件下Ag+取代Ca2+在HA晶体中的位置,生成AgxCa10-x(PO4)6(OH)2。Ag-HA长度随Ag+掺入量的增加而增大,当Ag+掺入量增加至1.50%时,Ag-HA由棒状生长为晶须状。选择4.50% Ag-HA作为抗菌粉体,其掺入量为9wt%时,陶瓷的抗菌率>99.9%,此时釉料中Ag3PO4含量为0.56%,低于目前研究中釉料中Ag3PO4添加量(2wt%~4wt%),不但在一定程度上解决了抗菌陶瓷产品成本较高的问题,而且满足JC/T 897-2002(抗菌陶瓷制品抗菌性能)对抗菌陶瓷抗菌性能的要求。  相似文献   

3.
采用水热法一步合成载银羟基磷灰石抗菌粉体(Ag-HA),并将其应用于抗菌陶瓷的制备。研究结果表明水热条件下HA实际载银量与AgNO3加入量存在较好的线性关系。XRD和TEM分析结果显示Ag-HA与HA具有相同的晶体结构,水热条件下Ag+取代Ca2+在HA晶体中的位置,生成AgxCa10-x(PO4)6(OH)2。Ag-HA长度随Ag+掺入量的增加而增大,当Ag+掺入量增加至1.50%时,Ag-HA由棒状生长为晶须状。选择4.50% Ag-HA作为抗菌粉体,其掺入量为9wt%时,陶瓷的抗菌率>99.9%,此时釉料中Ag3PO4含量为0.56%,低于目前研究中釉料中Ag3PO4添加量(2wt%~4wt%),不但在一定程度上解决了抗菌陶瓷产品成本较高的问题,而且满足JC/T 897-2002(抗菌陶瓷制品抗菌性能)对抗菌陶瓷抗菌性能的要求。  相似文献   

4.
采用固相球磨法制备了K+掺杂双钙钛矿Cs2AgInCl6纳米材料,该方法无需配体辅助,绿色环保。通过X射线衍射谱和拉曼光谱对晶体结构进行研究,通过激发光谱、发射光谱和时间分辨光谱对其发光性能进行研究。结果表明,Cs2AgInCl6为立方晶体,属于Fm3m空间群,由于宇称禁戒跃迁,其荧光量子产率(PLQY)低,小于0.1%。低于60%的K+掺杂主要取代Ag+的位置,引起Cs2AgInCl6的晶格膨胀,消除了晶格结构的反演对称性,打破了宇称禁戒跃迁,掺杂后Cs2AgInCl6的光致发光强度显著增强。K+的最佳掺杂比例为40%,Cs2Ag0.6K0.4InCl6发出中心波长为640 nm,半高宽为180 nm,平均荧光寿命达到29.2 ns,PLQY达到10.5%。当K+掺杂比例超过60%,K+开始取代Cs+的位置,产物发生相变,出现立方相的Cs2-xK1+x-yAgyInCl6和单斜相的Cs2-xK1+xInCl6产物,这些产物由于强电子-声子耦合,非辐射复合占据主导地位。  相似文献   

5.
铜转运蛋白(CTR1)不仅参与铜的细胞摄取,而且在其它重金属离子的摄取过程中也发挥重要作用. 本文采用紫外-可见(UV-Vis)光谱,核磁共振(NMR)和质谱(MS)的方法,研究了人源CTR1 (hCTR1)的C端金属结合域(C8)与Ag+和Hg2+的相互作用. 研究表明,Ag+和Hg2+都能与C8结合,但二者与C8的结合机制明显不同. 每个C8分子可以结合两个Ag+离子,但一个Hg2+却可以与两个C8形成桥联. 此外,Ag+离子与C8的配位是一个中等速度的交换过程,而Hg2+离子则为快速交换过程. C8的半胱氨酸残基是两种离子的重要结合位点,同时组氨酸残基也参与两种金属离子的配位,其中Ag+优先结合组氨酸,而Hg2+则对半胱氨酸的结合具有显著的优势. 虽然HCH基序对C8 与金属配位至关重要,一些远端的其它氨基酸也可以参与C8 与银离子的配位,这可能与CTR1 在摄取Ag+过程中的金属转移机制相关. 这些结果为理解hCTR1 蛋白摄取重金属离子的作用机制提供了必要的信息.  相似文献   

6.
本研究以碱处理NaA分子筛为载体,选取Ag<'+>为抗菌成分,通过液相离子交换法,制备了碱处理载银NaA分子筛抗菌剂.采用XRD、BET和ICP等手段对样品的结构和载银量等性质进行了表征,并考察了样品的缓释性能、抗变色性能及抗菌性能等.结果表明:碱处理NaA分子筛保持了原有的分子筛骨架结构,Si/Al比值下降到1.1,...  相似文献   

7.
本文研究了Bi2O3掺杂对Ag(Nb0.8Ta0.2)O3陶瓷的结构和介电性能的影响。X射线衍射(XRD)结果表明,Bi2O3的掺杂可以使陶瓷中Ag+被还原并析出,且银析出的量随Bi2O3掺杂量的增加而不断增加,这可能源自于Bi3+对Ag+的取代。在一定范围内增大Bi2O3掺杂量可提高Ag(Nb0.8Ta0.2)O3陶瓷的室温介电常数,降低介电损耗,并使温度系数向负值方向移动。当Bi2O3的掺杂量约为3.5wt%时,样品具有较大的介电常数(ε=672)和较小的介电损耗(tanδ=7.3×10-4)。  相似文献   

8.
银离子配位萃取银杏叶中多萜长链化合物的研究   总被引:3,自引:0,他引:3       下载免费PDF全文
本文建立了银杏叶中多萜长链化合物Ag+配位萃取方法,构筑了含Ag+配位萃取体系。研究了萃取剂极性、萃取温度、Ag+浓度等因素对分配比D的影响,分析测定了银杏叶聚戊烯醇(PPs)与Ag+的配位萃取比m,确定了配位萃取条件及解离条件。试验结果表明,所建立的含Ag+配位萃取剂用于分离浓缩聚戊烯类化合物选择性好、效率高,萃取剂再生方法简便。  相似文献   

9.
以脱氧胆酸钠(NaDC)为还原剂、稳定剂,经紫外光辐照AgNO3溶液在室温下制备出尺寸30nm左右的类球形的银纳米粒子。用紫外-可见光谱、透射电镜、圆二色谱和傅立叶变换红外光谱等测试手段对所制备的脱氧胆酸钠包裹的银纳米粒子进行了表征。红外光谱结果表明,在紫外光激发下,脱氧胆酸钠甾环上12α-OH发生氧化反应,同时还原Ag+为单质银,并聚集生成银纳米粒子。溶液的pH值对光化学氧化还原反应速度有着重要的影响,增加溶液的pH值,Ag+的还原反应速度明显加快。在吸附在银粒子表面的脱氧胆酸钠的手性氛围诱导下,生成的银纳米粒子在其表面等离子体共振区域出现手性信号。  相似文献   

10.
采用XRD和TG-DTA技术考察了NH4 β沸石和CsCl的固态离子交换过程,并用吡啶-IR和异丙醇分解反应研究了Cs β沸石的酸碱性质。结果显示Cs+离子易以极高离子交换度引入β沸石,由固态离子交换得到的Cs β具有更高的碱催化脱氢能力。  相似文献   

11.
Zeolites are nanoporous alumina silicates composed of silicon, aluminum, and oxygen in a framework with cations, water within pores. Their cation contents can be exchanged with monovalent or divalent ions. In the present study, the antimicrobial (antibacterial, anticandidal, and antifungal) properties of zeolite type X and A, with different Al/Si ratio, ion exchanged with Ag+, Zn2+, and Cu2+ ions were investigated individually. The study presents the synthesis and manufacture of four different zeolite types characterized by scanning electron microscopy and X-ray diffraction. The ion loading capacity of the zeolites was examined and compared with the antimicrobial characteristics against a broad range of microorganisms including bacteria, yeast, and mold. It was observed that Ag+ ion-loaded zeolites exhibited more antibacterial activity with respect to other metal ion-embedded zeolite samples. The results clearly support that various synthetic zeolites can be ion exchanged with Ag+, Zn2+, and Cu2+ ions to acquire antimicrobial properties or ion-releasing characteristics to provide prolonged or stronger activity. The current study suggested that zeolite formulations could be combined with various materials used in manufacturing medical devices, surfaces, textiles, or household items where antimicrobial properties are required.  相似文献   

12.
An efficient, novel and convenient method for the synthesis of modified polyacrylonitrile (PAN) with antibacterial property is reported. The modification of PAN was prepared by a nitrile click chemistry reaction with sodium azide (NaN3) and silver nitrate (AgNO3) as catalyst to yield antibacterial polymeric materials with 5-vinyltetrazole units. The results showed that 5-vinyltetrazole units had coordinated with silver ion (Ag+). Through the electrostatic spinning technology, the post-modification PAN nanofibers (PAN–Ag+ nanofibers) were prepared and the fibers were tested for their antimicrobial properties by the bacterial infection experiment. Afterwards, the antibacterial and stable performance of different proportions of silver ions in PAN nanofibers has been compared. The PAN–Ag+ nanofibers are characterized for mechanical and thermomechanical properties, structural analysis, appearance characteristics, as well as the antibacterial properties. And the nanofibers exhibit marvelous chemical stability according to the thermogravimetric analysis. When at 800 °C, the PAN decomposed about 60%, while the decomposition of the PAN–Ag+s was 40%. Based on the bacterial infection experiment, PAN–Ag+ nanofibers’ antibacterial properties were stronger with the increase of silver ions, such as the number of bacteria clone was smaller and the bacteriostatic ring was larger. Hence, with combination of silver ions, the final polymers show strong antimicrobial properties.  相似文献   

13.
The structures of alkali‐exchanged faujasite (X–FAU, X = Li+ or Na+ ion) and ZSM‐5 (Li–ZSM‐5) zeolites and their interactions with ethylene have been investigated by means of quantum cluster and embedded cluster approaches at the B3LYP/6‐31G(d, p) level of theory. Inclusion of the Madelung potential from the zeolite framework has a significant effect on the structure and interaction energies of the adsorption complexes and leads to differentiation of different types of zeolites (ZSM‐5 and FAU) that cannot be drawn from a typical quantum cluster model, H3SiO(X)Al(OH)2OSiH3. The Li–ZSM‐5 zeolite is predicted to have a higher Lewis acidity and thus higher ethylene adsorption energy than the Li–FAU zeolites (16.4 vs. 14.4 kcal/mol), in good agreement with the known acidity trend of these two zeolites. On the other hand, the cluster models give virtually the same adsorption energies for both zeolite complexes (8.9 vs. 9.1 kcal/mol). For the larger cation‐exchanged Na–FAU complex, the adsorption energy (11.6 kcal/mol) is predicted to be lower than that of Li–FAU zeolites, which compares well with the experimental estimate of about 9.6 kcal/mol for ethylene adsorption on a less acidic Na–X zeolite. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 94: 333–340, 2003  相似文献   

14.
Bamboo charcoal supporting silver (BC/Ag) was prepared by activation and chemical reduction. The BC/Ag composites were characterized by silver particle size and distribution, silver ion (Ag+) release and antibacterial properties. Scanning and transmission electron microscopy (SEM and TEM) showed that the Ag particles were distributed uniformly on the BC matrix. The Ag particle size was found to be less than 150 nm based on TEM. The Ag+ release increased initially which was followed by a marginal increase between the 8th and 24th hour. Composites contained higher amounts of silver exhibited a further rise in Ag+ release from the 24‐hours of storage in water. The antibacterial effects of the BC/Ag composite powders against Pseudomonas aeruginosa and Staphylococcus aureus were assessed from the minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) method, and an excellent antibacterial performance was discovered.  相似文献   

15.
Palladium containing EMT zeolite catalyst(Pd/EMT) was prepared and used for the indirect oxidative carbonylation of methanol to dimethyl carbonate(DMC).The EMT zeolite was employed as a new catalyst support and compared with the conventional Pd containing FAU zeolite catalyst(Pd/FAU).The Pd/EMT in contrast to the Pd/FAU catalyst exhibited high intrinsic activity with the turnover frequency of 0.25 s-1 vs.0.11 s-1.The Pd/EMT catalyst showed high CO conversion of 82% and DMC selectivity of 79%,that maintained for at least 130 h,while the activity of the Pd/FAU catalyst rapidly deteriorated within 12 h.The enhanced interactions between Pd and EMT zeolite inhibited the sintering of palladium clusters and maintained the Pd2+ active sites in the Pd/EMT catalyst.The stabilization of the mono-dispersed Pd clusters within the EMT zeolite is paramount to the excellent performance of the catalyst for the indirect oxidative carbonylation of methanol to DMC.  相似文献   

16.
Introduction Oxygen and nitrogen have been produced tradition-ally by cryogenic distillation of air. Methods for the non-cryogenic separation based on selective adsorption have been developed and commercialized since the 1970s and have led to a cost-effective process for this important separation.1 Low-silica zeolites are important materials for producing oxygen by selective adsorption of nitrogen. In 19891990, a new generation of lith-ium-based adsorbents was developed.2,3 Highly lithium exc…  相似文献   

17.
Silver sulfide (Ag2S) clusters were synthesized in microporous zeolites and mesoporous AlMCM-41 by the sulfurization of Ag+ ions exchanged within the pores of the host. Characterization was performed by means of XRD, UV-Vis Ag K-edge XAFS and photoluminescence. The pore size of the host has great effects on the photoluminescence properties. Ag2S/AlMCM-41 showed photoluminescence at the longer wavelengths than Ag2S/zeolites. The photoluminescence band of Ag2S in the zeolite with 1-dimensional channels was narrow in comparison to the Ag2S in zeolites with 2- or 3-dimensional channels.  相似文献   

18.
Silver‐based nanocomposites are known to act as biocides against a series of microorganisms and are largely studied as an alternative to substitute conventional antibiotics that show decreasing efficacy. In this work, an eco‐friendly method to synthesize silver nanoparticles assembled on the surface of hexaniobate crystals is reported. By means of ion exchange, K+ ions of layered potassium hexaniobate were partially substituted by Ag+ ions and the resulting material was exposed to UV light. The irradiation allowed the reduction of silver ions with consequent formation of silver nanoparticles located only on the hexaniobate surface, whereas Ag+ ions located in the interlayer space remained in the ionic form. Increasing UV‐light exposure times allowed controlling of the silver nanoparticle size. The antibacterial effects of the pristine potassium hexaniobate and of silver‐containing hexaniobate samples were tested against Escherichia coli (E. coli). The antibacterial efficacy was determined to be related to the presence of silver in hexaniobate. An increasing activity against E. coli was observed with the decrease in silver nanoparticles size, suggesting that silver nanoparticles of distinct sizes interact differently with bacterial cell walls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号