首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A series of luminescent ion exchanged zeolite are synthesized by introducing various ions into NaY zeolite. Monometal ion (Eu3+, Tb3+, Ce3+, Y3+, Zn2+, Cd2+, Cu2+) exchanged zeolite, rare‐earth ion (Eu3+, Tb3+, Ce3+) exchanged zeolite modified with Y3+ and rare‐earth ion (Eu3+, Tb3+, Ce3+) exchanged zeolite modified with Zn2+ are discussed here. The resulting materials are characterized by Fourier transform infrared spectrum radiometer (FTIR), XRD, scanning electronic microscope (SEM), PLE, PL and luminescence lifetime measurements. The photoluminescence spectrum of NaY indicates that emission band of host matrix exhibits a blueshift of about 70 nm after monometal ion exchange process. The results show that transition metal ion exchanged zeolites possess a similar emission band due to dominant host luminescence. A variety of luminescence phenomenon of rare‐earth ion broadens the application of zeolite as a luminescent host. The Eu3+ ion exchanged zeolite shows white light luminescence with a great application value and Ce3+ exchanged zeolite steadily exhibits its characteristic luminescence in ultraviolet region no matter in monometal ion exchanged zeolite or bimetal ions exchanged zeolite.  相似文献   

2.
采用两步法合成了 sod 基系列分子筛(EMT、FAU、SOD),并通过离子交换法引入 Ag+得到载银分子筛,通过 X 射线衍射(XRD)、扫描电子显微镜(SEM)证明离子交换前后分子筛骨架结构和晶粒尺寸没有发生明显变化;通过红外光谱(IR)、热重(TG)证明制得的载银分子筛具有良好的稳定性;对获得的载银分子筛进行了Ag+释放实验与抗菌能力测试,考察了分子筛种类和晶粒尺寸对抗菌性能的影响。结果表明具有笼状结构的FAU与EMT分子筛因可储存更多的Ag+而具有更好的抗菌性能,而具有超笼结构的 FAU 分子筛抗菌性能最优。通过对比不同晶粒尺寸载银 FAU 分子筛抗菌数据发现,晶粒尺寸为 100 nm 的载银FAU分子筛因外表面丰富的抗菌活性位点以及其内部可以储存并不断释放 Ag+而具有最优的抗菌性能和抗菌寿命。而晶粒尺寸为10 nm的载银FAU分子筛由于晶粒尺寸较小、外比表面积大、扩散路径短,Ag+的释放速率最快,抗菌效率最高。  相似文献   

3.
In the present study, non-conventional solid acid catalysts such as NaY, metal ion exchanged zeolite NaY (Zn2+, Fe3+, Ce3+, La3+ and Nd3+), H-mordenite, H-β and HZSM-5 were used in order to overcome the disadvantages of conventional Friedel-Crafts catalysts for the acylation of anisole with acetic anhydride. Among the various zeolites studied, the HY zeolite shows an intermediate activity. Zeolite containing transition metal ions (Zn2+ and Fe3+) are less active and zeolite NaY is nearly inactive. The catalysts exhibit the activity in the order H-β>transition metal ions (Zn2+ and Fe3+)>HY>NaY zeolite. The highest catalytic activity of H-β could be due to its larger pore size. The type of acidity and the acid strength in zeolite Y were determined by FTIR and differential scanning calorimetric (DSC) studies on the pyridine adsorbed catalysts. The correlation of catalytic activity with acidity reveals that Brönsted acid sites in zeolite promote the acylation of anisole.  相似文献   

4.
The electron capture dissociation (ECD) and collision-induced dissociation (CID) of complexes of polyamidoamine (PAMAM) dendrimers with metal ions Ag+, Cu2+, Zn2+, Fe2+, and Fe3+ were determined by Fourier transform ion cyclotron resonance mass spectrometry. Complexes were of the form [PD + M + mH]5+ where PD = generation two PAMAM dendrimer with amidoethanol surface groups, M = metal ion, m = 2−4. Complementary information regarding the site and coordination chemistry of the metal ions can be obtained from the two techniques. The results suggest that complexes of Fe3+ and Cu2+ are coordinated via both core tertiary amines, whereas coordination of Ag+ involves a single core tertiary amine. The Zn2+ and Fe2+ complexes do not appear to involve coordination by the dendrimer core.  相似文献   

5.
Silver sulfide (Ag2S) clusters were synthesized in microporous zeolites and mesoporous AlMCM-41 by the sulfurization of Ag+ ions exchanged within the pores of the host. Characterization was performed by means of XRD, UV-Vis Ag K-edge XAFS and photoluminescence. The pore size of the host has great effects on the photoluminescence properties. Ag2S/AlMCM-41 showed photoluminescence at the longer wavelengths than Ag2S/zeolites. The photoluminescence band of Ag2S in the zeolite with 1-dimensional channels was narrow in comparison to the Ag2S in zeolites with 2- or 3-dimensional channels.  相似文献   

6.
A chloroform membrane system containing dibenzodiaza‐15‐crown‐4 was found to be a highly efficient and selective transport of Ag+ ions through a chloroform liquid membrane. In the presence of thiosulfate ion as a suitable ion stripping agent in the receiving phase, the amount of silver transported across the liquid membrane after 105 minis 95 ± 1.3%. The selectivity of Ag+transport from aqueous solutions containing Tl+, Pb2+, Cd2+, Ni2+, Co2+, K+, Ca2+, Sr2+, Hg2+, Zn2+, Cu2+was investigated. The interfering effect of Cu2+ ions was drastically diminished in the presence of EDTA as a proper masking agent in the source phase.  相似文献   

7.
The retention properties for metal ions, the maximum retention capacity, the antibacterial and mutagenic activity of water-soluble metal ion complexes from water-soluble poly[2-hydroxy-(3-methacryloyloxypropyl)aminodiacetic acid] P(HMPADA) were studied. HMPADA was synthesized by radical polymerization in aqueous solution. The water-soluble polymer (WSP) P(HMPADA), containing ester, hydroxy, tertiary amine, and two carboxylic acid groups in every monomeric unit was investigated as polychelatogen in view of its potential metal ion binding properties using the liquid-phase polymer based retention (LPR) technique under different experimental conditions. The water-soluble complexes were investigated as biocides. Metal ions investigated at pH 3, 5, and 7 were: Ag+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Pb2+, Al3+, Cr3+, and Fe3+. Depending on pH, P(HMPADA) showed a different interaction affinity, where the highest interaction occurred at pH 7. Polymer-metal ion interaction showed the following affinity order: tri-valent >di-valent >mono-valent ion. Maximum retention capacity (MRC) ranged between 17.2 and 342.2 mg metal ion/g polymer for Cu2+ and Ag+, respectively. FT-IR showed a variation in νCO, νΟ−CO, νOH absorption signals, and Far-IR showed new signals corresponding to metal-O and metal-N interaction, indicating a participation of carboxylic acid, amine, and hydroxy groups of polymer-metal ion complexes. Antibacterial activity of Ag+, Cu2+, Zn2+, and Cd2+ complexes were studied. These complexes presented a higher biocide activity against Staphylococcus aureus (Gram-positive) than for Escherichia coli (Gram-negative) with a lowest minimum inhibitory concentration (MIC) of 4 mg/mL for polymer-Cd2+ complex. Scanning electron microscopy (SEM) showed the interaction between polymer-metal ion complexes and bacteria surface. All samples showed low genotoxic activity.  相似文献   

8.
Ab initio cluster quantum chemical calculations at the Hartree–Fock (HF/Lanl2dz) and correlated second-order Moller–Plesset perturbation theory (MP2/Lanl2dz) levels were performed for NO and N2O interactions with Ag+ and Cu+ ion-exchanged zeolites. The interaction energies were estimated in a conventional way and also corrected for basis set superposition errors. It was shown that the highly dispersed Ag+ counterions establish twofold coordination to the lattice oxygens on the zeolite surface, similar to the case of Cu+ ions. However, both NO and N2O bind relatively strongly to the Cu active sites of Cu+ ion-exchanged zeolites than those of the Ag+ site of the Ag+ ion-exchanged zeolites. Based on the results of these calculations, the two different forms of adsorption for these molecules on the catalyst surface, the nature of their binding and characteristics of the adsorption properties have been discussed. Finally, some comparisons with the results obtained by a variety of density functional theory calculations on target systems have been presented.  相似文献   

9.
The complexation reaction of dibenzopyridino-18-crown-6 (DBPY 18C6) with Co2+, Cu2+, Zn2+, Pb2+, Cd2+, Hg2+, and Ag+ have been studied in DMSO at 25°C by the spectrophotometric method. Murexide was used as a competitive colored ligand. The stoichiometry of metal ion-murexide and metal ions with DBPY18C6 complexes were estimated by mole ratio and continuous variation methods and emphasized by the KINFIT program. The stoichiometry of all the complexes was found to be 1: 1 (metal ion/ligand). The order of stability constants for the obtained metal ion-murexide complexes (1: 1) varies in the order Cu2+ > Cd2+ > Co2+ ∼ Pb2+ > Zn2+ > Ag+ > Hg2+. This trend shows that the transition metal ions clearly obey the Irving-Williams role. For the post-transition metal ions, the ionic radius and soft-hard behavior was the major affects in varying of this order. The dibenzopyridino-18-crown-6 complexes with the used metal ions vary as Ag+ > Pb2+ > Cu2+ > Cd2+ > Hg2+ > Zn2+ > Co2+. The article is published in the original.  相似文献   

10.
Zusammenfassung Die Trennung und Isolierung von folgenden Schwermetallen bei einem hohen Überschuß an Fremdionen mit Hilfe neuer selektiver Chelataustauscher wird beschrieben: Cu2+/Zn2+, Cu2+/Pb2+, Ag+/Cu2+, Ag+/Pb2+, Hg2+/Zn2+, Hg2+/Cd2+; Abtrennung von Hg2+. Unter gleichen Bedingungen war mit dem handelsüblichen Austauscher Dowex A-1 keine Trennung möglich.
Quantitative separation of heavy metals by means of chelating exchangers based on polystyrol
Summary The separation and isolation of the following heavy metals in presence of a high excess of foreign ions by means of new selective chelating exchangers is described: Cu2+/Zn2+, Cu2+/Pb2+, Ag+/Cu2+, Ag+/Pb2+, Hg2+/Zn2+, Hg2+/Cd2+; separation of Hg2+. Under the same conditions no separation could be achieved by the ion-exchanger Dowex A-1.
  相似文献   

11.
Various metal cations exchanged Y zeolites were prepared via the exchange of NaY zeolite with aqueous solutions containing K+, Ca2+, Cu2+, La3+ and Ce3+ cations, respectively. The influence of the extra-framework cations nature of these ion-exchanged Y zeolites on their adsorption performance for a low content of halo-olefinic impurities, mainly including 1-chloro-3,3,3-trifluoro-1-propene (HCFC-1233zd), 1-chloro-1,3,3,3-tetrafluoro-1-propene (HFC-1224zb) and 2-chloro-1,3,3,3-tetrafluoro-1-propene (HFC-1224xe), in the 1,1,1,3,3-pentafluoropropane (HFC-245fa) product after distillation was investigated. HCFC-1233zd impurity can be substantially removed from HFC-245fa product feed via the adsorption over multivalent metal cations and Cu+ cation exchanged Y zeolites, which is ascribed to the formation of π-adsorption complexes between HCFC-1233zd and zeolites, rather than over alkaline metal cations exchanged Y zeolites. Among multivalent metal cations exchanged Y zeolites, CeY has the highest adsorption capacity for HCFC-1233zd and best regeneration performance, due to its lowest density of strong Brønsted and weak Lewis acid sites as well as high framework stability during the regeneration. Regardless of the cations introduced in Y zeolite used as an adsorbent, HCFC-1224zb and HCFC-1224xe impurities are not obviously removed from HFC-245fa product feed via the adsorption, maybe due to more halogen atoms linked with the double bond in them comparing with HCFC-1233zd.  相似文献   

12.
The complexes of the peptides (Pep) bradykinin (RPPGFSPFR), des-Arg1-bradykinin, and des-Arg9-bradykinin with the metal (M) ions Na+, K+, Cs+, Cu+, Ag+, Co2+, Ni2+, and Zn2+ are generated in the gas phase by matrix-assisted laser desorption/ionization and the structures of the corresponding [Pep + M+]+ or [Pep − H+ + M2+]+ cations are probed by postsource decay (PSD) mass spectrometry. The PSD spectra depend significantly on the metal ion attached; moreover, the various metal ions respond differently to the presence or absence of a basic arginine residue. The Na+ and K+ adducts of all three peptides mainly produce N-terminal sequence ions upon PSD; the fragments observed point out that these metal ions are anchored by the PPGF segment and not the arginine residue(s). In contrast, the adducts of Cu+ and Ag+ show a strong dependence on the position of Arg; complexes of des-Arg1-Pep (which contains a C-terminal Arg) produce primarily yn ions whereas those of des-Arg9-Pep generate exclusively an and bn ions. These trends are consistent with Cu+ ligation by Arg’s guanidine group. The [Pep + Cs+]+ ions mainly yield Cs+; a second significant fragmentation occurs only if a C-terminal arginine is present and involves elimination of this arginine’s side chain plus water. This reaction is rationalized through a salt bridge mechanism. The most prominent PSD products from [Pep − H+ + Co2+]+ and [Pep − H+ + Ni2+]+ contain at least one phenylalanine residue, revealing a marked preference for these divalent metal ions to bind to aromatic rings; the fragmentation patterns of the complexes further suggest that Co2+ and Ni2+ bind to deprotonated amide nitrogens. The coordination chemistry of Zn2+ combines features found with the divalent Co2+/Ni2+ as well as the monovalent Cu+/Ag+ transition metal ions. Generally, the structure and fragmentation behavior of each complex reflects the intrinsic coordination preferences of the corresponding metal ion.  相似文献   

13.
This research concerns the analysis of the metal ion binding of benzo‐ and pyridine‐azacrown ether compounds of different structures and sizes by potentiometric method. The ligands are able to form 1 : 1 complexes with heavy metal ions (Cu+2, Pb+2, Cd+2, Ag+, Ni+2, Zn+2) in water of middle or high stability. To understand the selectivity in cation binding, different factors were considered.  相似文献   

14.
A chloroform membrane system containing a given mixture of dibenzyldiaza‐18‐crown‐6 and palmetic acid was applied for transport of Pb2+ ions. The transport was capable of moving metal ions “uphill”. Thus, it was possible to follow the transfer of Pb(II) from the aqueous source phase to the organic layer and from the organic layer to the receiving phase. The effects of thiosulfate concentration in the receiving phase, palmetic acid and dibenzyldiaza‐18‐crown‐6 concentration in the organic phase on the efficiency of the transport system were examined. By using S2O32? ion as metal ion acceptor in the receiving phase, the amount of lead ion transport across the liquid membrane after 150 minutes is 96 ± 1.5%. The selectivity and efficiency of lead transport from aqueous solution containing Cu2+, Tl+, Ag+, Co2+, Ni2+, Mg2+, Zn2+, Hg2+, Cd2+, Ca2+ were investigated. In the presence of thiosulfate as a suitable masking agent in the source phase, the interfering effects of Ag+ and Cu2+ were diminished drastically.  相似文献   

15.
A new macrocyclic chemosensor containing two naphthalene fluorophores has been synthesized. The fluorescent properties of this receptor has been studied in the presence of various metal ions such as Na+, Ag+, Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Pb2+. When increasing concentrations of Zn2+ ions were introduced, the emission of L was drastically increased (EFE = 4.34). This special change was not observed when other metal ions were used; such highly selective fluorescent response indicates that this receptor can easily discriminate Zn2+ ions from other similar species. Model calculations at DFT level further suggest the possible interaction mode, and relatively steric position between the host and guest also influence the optical response.  相似文献   

16.
Hui Xu  Xiwen Zeng  Huiling Dai 《中国化学》2011,29(10):2165-2168
A new fluorescent chemosensor based upon 1,8‐naphthalimide and 8‐hydroxyquinoline was synthesized, and its fluorescent properties in the presence of different metal cations (Hg2+, Ag+, Zn2+, Fe2+, Cd2+, Pb2+, Ca2+, Cu2+, Mg2+, and Ba2+) were investigated. It displayed fluorescence quenching with some heavy and transition metal (HTM) ions, and the quenching strongly depended on the nature of HTM ions.  相似文献   

17.
A new chelating resin containing bis[2-(2-benzothiazolylthioethyl)sulfoxide] was synthesized using chloromethylated polystyrene as material and characterized by elemental analysis and infrared spectra. The adsorption capacities of the newly formed resin for Hg2+, Ag+, Cu2+, Zn2+, Pb2+, Mn2+, Ni2+, Cd2+ and Fe3+ were investigated over the pH range 1.0-6.0. The resin exhibited no affinity for alkali or alkaline earth metal ions. The maximum adsorption capacities of the resin for Hg2+, Ag+, Cu2+, Zn2+, Pb2+, Mn2+, Ni2+, Cd2+ and Fe3+ were 1.49, 0.96, 0.58, 0.11, 0.37, 0, 0.24, 0.36 and 0.25 mmol g−1, respectively. In column operation it had been observed that Hg2+ and Ag+ in trace quantity could be separated from different binary mixtures and Hg2+ could be effectively removed from industrial wastewater and the natural water spiked with Hg2+ at usual pH.  相似文献   

18.
Fluorescent chemosensor 3 can sense Cu2+ ions (1-8 μM) even in the presence of elevated levels of Ni2+, Cd2+, Zn2+, Hg2+, Ag+ and Pb2+ (5000 μM). 3 can also analyze for Ag+ ions (50-500 μM) in the presence of Ni2+, Cd2+, Zn2+, Hg2+ and Pb2+ (5000 μM) but Cu2+ strongly interferes.  相似文献   

19.
The iiii stereoisomer of the tetrathiophosphonate-calix[4]resorcinarene host 1 exhibited excellent extraction properties towards soft metal ions, with a better affinity for Ag+ (91%), than for Tl+ (38%) and Hg2+ (16%). The extraction of other picrate salts (Cu2+, Ni2+, Co2+, Zn2+, Cd2+, Pb2+) was not detected. The stoichiometry and the structure of the Hg2+, Tl+ and Ag+ complexes were studied by NMR in solution and gave respectively 1:1, 1:1 and 1:2 host-guest complexes. The formation of the self-assembled 12·(AgPic)4 complex was independent on the anion and only observed with silver(I) ion.  相似文献   

20.
Polarographic and voltammetric methods were employed to study the influence of N-methylpyrrolidinone(2) (NMP) and N-methylthiopyrrolidinone(2) (NMTP) towards a series of cations. In NMP reversible electrode reactions were observed for Na+, K+, Tl+, Zn2+, Cd2+, Cu2+, Ag+ and irreversible reductions for Ba2+, Mn2+, Co2+ and Ni2+. 0.1 mol l?1 tetraethylammoniumperchlorate solutions served as supporting electrolytes. Li+ was not electroactive in the supporting electrolyte mentioned, but yielded an irreversible cathodic wave in tetra-n-butylammonium perchlorate. In NMTP, Li+, Na+, Tl+, Zn2+, Cd2+, Cu+ and Ag+ gave reversible cathodic waves on the DME, while Mn2+, Co2+ and Ni2+ were reduced in an irreversible electrode process. Bisbiphenylchromium iodide serving as a reference system throughout this study showed reversible behaviour in both solvents. A comparison of E1/2 for given ions in both solvents showed a shift of about 0.5 V to more positive values in the case of a typically hard cation such as Na+ whereas soft cations such as Ag+ and Cu+ shifted by more than 0.8 V to more negative values. The effects of these two solvents on the cations studied is discussed in terms of donor acceptor interactions between the cation and the solvent molecules with special respect to the changes caused by replacing the oxygen atom in NMP by a sulphur atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号