首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Titanium dioxide (TiO2) is one of the green cata-lysts, which has attracted much attention due to its promising applications in the purification of air, the bactericidal action of water, and environmental photocatalytic degradation of organic pollutant co…  相似文献   

2.
改变锰的负载最及前驱体,制备了MnOx/Al2O、MnOx/BaO-Al2O3系列催化剂;采用X-射线衍射(XRD)、程序升温还原(TPR)对催化剂进行表征,并考察了BaO的加入对CH4低温燃烧催化活性的影响。结果表明,用醋酸锰作前驱体与用硝酸锰制备的催化剂相比,其活性组分分散性好、氧中心活性高,催化CH4低温燃烧的活性高。在Al2O3载体中掺入BaO,催化剂的氧中心数目的没有明显变化,但氧中心活性有所下降,因而降低了对CH4低湿燃烧的催化活性。  相似文献   

3.
The effects of the addition of manganese to a series of TiO(2)-supported cobalt Fischer-Tropsch (FT) catalysts prepared by different methods were studied by a combination of X-ray diffraction (XRD), temperature-programmed reduction (TPR), transmission electron microscopy (TEM), and in situ X-ray absorption fine structure (XAFS) spectroscopy at the Co and Mn K-edges. After calcination, the catalysts were generally composed of large Co(3)O(4) clusters in the range 15-35 nm and a MnO(2)-type phase, which existed either dispersed on the TiO(2) surface or covering the Co(3)O(4) particles. Manganese was also found to coexist with the Co(3)O(4) in the form of Co(3-x)Mn(x)O(4) solutions, as revealed by XRD and XAFS. Characterization of the catalysts after H(2) reduction at 350 degrees C by XAFS and TEM showed mostly the formation of very small Co(0) particles (around 2-6 nm), indicating that the cobalt phase tends to redisperse during the reduction process from Co(3)O(4) to Co(0). The presence of manganese was found to hamper the cobalt reducibility, with this effect being more severe when Co(3-x)Mn(x)O(4) solutions were initially present in the catalyst precursors. Moreover, the presence of manganese generally led to the formation of larger cobalt agglomerates ( approximately 8-15 nm) upon reduction, probably as a consequence of the decrease in cobalt reducibility. The XAFS results revealed that all reduced catalysts contained manganese entirely in a Mn(2+) state, and two well-distinguished compounds could be identified: (1) a highly dispersed Ti(2)MnO(4)-type phase located at the TiO(2) surface and (2) a less dispersed MnO phase being in the proximity of the cobalt particles. Furthermore, the MnO was also found to exist partially mixed with a CoO phase in the form of rock-salt Mn(1-x)Co(x)O-type solid solutions. The existence of the later solutions was further confirmed by scanning transmission electron microscopy with electron energy loss spectroscopy (STEM-EELS) for a Mn-rich sample. Finally, the cobalt active site composition in the catalysts after reduction at 300 and 350 degrees C was linked to the catalytic performances obtained under reaction conditions of 220 degrees C, 1 bar, and H(2)/CO = 2. The catalysts with larger Co(0) particles ( approximately >5 nm) and lower Co reduction extents displayed a higher intrinsic hydrogenation activity and a longer catalyst lifetime. Interestingly, the MnO and Mn(1-x)Co(x)O species effectively promoted these larger Co(0) particles by increasing the C(5+) selectivity and decreasing the CH(4) production, while they did not significantly influence the selectivity of the catalysts containing very small Co(0) particles.  相似文献   

4.
The structure and catalytic properties of anatase and rutile supported manganese oxide catalysts prepared by impregnation method have been studied by using X-ray diffraction (XRD), laser Raman spectroscopy (LRS), X-ray photoelectron spectroscopy (XPS), H(2) temperature-programmed reduction (H(2)-TPR) and BET surface area measurements combined with activity testing of selective catalytic reduction (SCR) of NO by NH(3). It has been shown that the manganese oxide loadings on the two TiO(2) supports exert great influences on the SCR activity. For the rutile supported manganese oxide catalysts, increasing manganese oxide loading leads to the increase of reducibility of dispersed manganese oxide species and the rate constant k, which reaches a maximum around 9.6 × 10(-6) mol g(Mn)(-1) s(-1) at 0.5 mmol Mn per 100 m(2) TiO(2). When the manganese oxide loading is beyond this value, the existence of amorphous MnO(x) multiple layers will certainly reduce the ratio of manganese oxide species exposed on the surface and the reducibility of dispersed manganese oxide species, resulting in the rapid decrease of rate constant k. The LRS and XPS results have revealed that for the anatase supported manganese oxide catalysts manganese oxide species exist in Mn(+4) as a major species with Mn(+3) species and partially undecomposed Mn-nitrate as the minor species. Under the SCR reaction conditions, Mn(+3) species on anatase are oxidized to Mn(+4) species, inserting in the surface of anatase and promoting the anatase-to-rutile transformation in the surface layers of the anatase support. Since these Mn(4+) cations are actually dispersed on the support with a rutile shell-anatase core structure and its concentration is very near to that of MnO(x)/TiO(2) (R) catalyst, the relation between the rate constant k and the MnO(x) loading on the anatase support is similar to that on the rutile support, and that the rate constant k values for anatase and rutile supported manganese oxide catalysts are very close at the same MnO(x) loading.  相似文献   

5.
Lithium-excess manganese layered oxides, which are commonly described by the chemical formula zLi(2)MnO(3)-(1-z)LiMeO(2) (Me = Co, Ni, Mn, etc.), are of great importance as positive electrode materials for rechargeable lithium batteries. In this Article, Li(x)Co(0.13)Ni(0.13)Mn(0.54)O(2-δ) samples are prepared from Li(1.2)Ni(0.13)Co(0.13)Mn(0.54)O(2) (or 0.5Li(2)MnO(3)-0.5LiCo(1/3)Ni(1/3)Mn(1/3)O(2)) by an electrochemical oxidation/reduction process in an electrochemical cell to study a reaction mechanism in detail before and after charging across a voltage plateau at 4.5 V vs Li/Li(+). Changes of the bulk and surface structures are examined by synchrotron X-ray diffraction (SXRD), X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectroscopy (SIMS). SXRD data show that simultaneous oxygen and lithium removal at the voltage plateau upon initial charge causes the structural rearrangement, including a cation migration process from metal to lithium layers, which is also supported by XAS. This is consistent with the mechanism proposed in the literature related to the Li-excess manganese layered oxides. Oxygen removal associated with the initial charge on the high voltage plateau causes oxygen molecule generation in the electrochemical cells. The oxygen molecules in the cell are electrochemically reduced in the subsequent discharge below 3.0 V, leading to the extra capacity. Surface analysis confirms the formation of the oxygen containing species, such as lithium carbonate, which accumulates on the electrode surface. The oxygen containing species are electrochemically decomposed upon second charge above 4.0 V. The results suggest that, in addition to the conventional transition metal redox reactions, at least some of the reversible capacity for the Li-excess manganese layered oxides originates from the electrochemical redox reaction of the oxygen molecules at the electrode surface.  相似文献   

6.
MnOx/ZrO2催化剂表面氧性能   总被引:2,自引:0,他引:2  
采用XRD,TPD和TPR等技术研究了MnOx/ZrO2催化剂的表面特性,结果表明,ZrO2表面的MnOx物种主要以Mn2O3和MnO2形态存在,经还原-氧化处理后,MnOx物种的分散状况趋好。Mn-Zr之间的相互作用促进MnO2的分解,而抑制Mn2O3的分解。  相似文献   

7.
气敏材料Cd2V2O7的制备和性能   总被引:7,自引:0,他引:7  
用水热氧化法制备出γMn2O3粉末,并在不同温度下进行烧结.采用XRD,TEM,XPS,IR及紫外分光光度法等表征产物.结果表明,未烧结产物即为单相纳米晶,大部分近似球形,有轻微团聚.产物于空气中100~550℃范围内烧结时热稳定性好.随烧结温度的升高粉末的平均粒子尺寸增大,产物中锰以Mn(Ⅲ)状态存在.  相似文献   

8.
Reaction of the n = 3 Ruddlesden-Popper oxychloride Sr(4)Mn(3)O(7.5)Cl(2) with calcium hydride yields the topotactically reduced phase Sr(4)Mn(3)O(6.5)Cl(2). The deintercalation of oxide ions from the central MnO(1.5) layer of the starting phase is accompanied by a rearrangement of the anion lattice, resulting in a layer of composition MnO(0.5) in the reduced material, consisting of chains of MnO(4) tetrahedra connected by edge and corner sharing. Magnetization and low-temperature neutron diffraction data are consistent with antiferromagnetic coupling of manganese spins, but no long-range magnetic order is observed down to 5 K, presumably due to the large interlayer separation in the reduced phase. The influence of anion substitution on the structural selectivity of low-temperature reduction reactions is discussed.  相似文献   

9.
合成了一个新配合物[Mn(napn)(CH3OH)2]ClO4 (C26H26 Cl N2O8Mn,Mr = 584.88,H2napn = 双a-萘酚醛缩乙二胺),并测定了其晶体结构。晶体属于三斜晶系,空间群P ,a = 7.813(1),b = 13.025(2),c = 14.089(2) ? = 64.89(3), = 83.98(3), = 78.11(3)海琕 = 1270.16 ?,Z = 2, Dc = 1.529 g/cm3, F(000) = 604, R = 0.0837, wR = 0.1636。锰(Ⅲ)离子的配位构型为拉长的八面体。Schiff碱配体napn2-中的N2O2在赤道平面与锰(Ⅲ)形成四配位,2个CH3OH中的O原子分别在赤道平面两侧轴向位置与锰(Ⅲ)配位。由于Jahn-Teller效应,轴向上的MnO平均键长为2.52 拧A硗猓О写嬖诜肿幽诤头肿蛹淝饧?  相似文献   

10.
SBA-15介孔分子筛负载型过渡金属催化燃烧脱除乙腈废气   总被引:2,自引:0,他引:2  
制备了具有规则孔道结构和较高比表面积的SBA-15介孔分子筛,采用真空旋转蒸发法将过渡金属(Cu,Co,Cr和Mn)负载到SBA-15表面,得到负载型过渡金属催化剂,并将其用于含氰废气催化燃烧的实验中,考察了其催化活性.催化剂的理化性能通过X射线衍射(XRD)、氮气吸附-脱附、透射电子显微镜(TEM)、H2-程序升温还...  相似文献   

11.
采用选择性溶解法和计算法结合的方法,测定了四氧化三锰中Mn^2+、Mn^3+、Mn^4+的含量,求出了四氧化三锰中的锰氧摩尔比和三种不同价态的锰离子在尖晶石中的离子分布式,进而确定其结构。分析结果与XRD谱图吻合。  相似文献   

12.
A new synthetic procedure has been developed in Mn cluster chemistry involving reductive aggregation of permanganate (MnO4-) ions in MeOH in the presence of benzoic acid, and the first products from its use are described. The reductive aggregation of NBu(n)4MnO4 in MeOH/benzoic acid gave the new 4Mn(IV), 8Mn(III) anion [Mn12O12(OMe)2(O2CPh)16(H2O)2]2-, which was isolated as a mixture of two crystal forms (NBu(n)4)2[Mn12O12(OMe)2(O2CPh)16(H2O)2].2H2O.4CH2Cl2 (1a) and (NBu(n)4)2[Mn12O12(OMe)2(O2CPh)16(H2O)2].2H2O.CH2Cl2 (1b). The anion of 1 contains a central [Mn(IV)4(mu3-O)2(mu-O)2(mu-OMe)2]6+ unit surrounded by a nonplanar ring of eight Mn(III) atoms that are connected to the central Mn4 unit by eight bridging mu3-O2- ions. This compound is very similar to the well-known [Mn12O12(O2CR)16(H2O)4] complexes (hereafter called "normal Mn12"), with the main difference being the structure of the central cores. Longer reaction times (approximately 2 weeks) led to isolation of polymeric [Mn(OMe)(O2CPh)2]n2, which contains a linear chain of repeating [Mn(III)(mu-O2CPh)2(mu-OMe)Mn(III)] units. The chains are parallel to each other and interact weakly through pi-stacking between the benzoate rings. When KMnO4 was used instead of NBu(n)4MnO4, two types of compounds were obtained, [Mn12O12(O2CPh)16(H2O)4] (3), a normal Mn12 complex, and [Mn4O2(O2CPh)8(MeOH)4].2MeOH (4.2MeOH), a new member of the Mn4 butterfly family. The cyclic voltammogram of 1 exhibits three irreversible processes, two reductions and one oxidation. One-electron reduction of 1 by treatment with 1 equiv of I- in CH2Cl2 gave (NBu(n)4[Mn12O12(O2CPh)16(H2O)3].6CH2Cl2 (5.6CH2Cl2), a normal Mn12 complex in a one-electron reduced state. The variable-temperature magnetic properties of 1, 2, and 5 were studied by both direct current (dc) and alternating current (ac) magnetic susceptibility measurements. Variable-temperature dc magnetic susceptibility studies revealed that (i) complex 1 possesses an S = 6 ground state, (ii) complex 2 contains antiferromagnetically coupled chains, and (iii) complex 5 is a typical [Mn12]- cluster with an S = 19/2 ground state. Variable-temperature ac susceptibility measurements suggested that 5 and both isomeric forms of 1 (1a,b) are single-molecule magnets (SMMs). This was confirmed by the observation of hysteresis loops in magnetization vs dc field scans. In addition, 1a,b, like normal Mn12 clusters, display both faster and slower relaxing magnetization dynamics that are assigned to the presence of Jahn-Teller isomerism.  相似文献   

13.
This work describes the use of mesoporous SBA-15 silicas as hard templates for the size-controlled synthesis of oxide nanoparticles, with the pores acting as nanoscale reactors. This fundamental work is mainly aimed at understanding unresolved issues concerning the occurrence and size dependence of phase transitions in oxide nanocrystals. Aqueous solutions of Fe(NO3)3*9H2O are deposited inside the pores of SBA-15 silicas with mesopore diameters of 4.3, 6.6, and 9.5 nm. By calcination, the nitrate salt transforms into FeOx oxides. The XRD peaks of nanocrystals are broad and overlapping, resulting in ambiguities attributed to a given allotropic variety of Fe2O3 (alpha, epsilon, or gamma) or Fe3O4. The association of XRD, SAED, and Raman information is necessary to solve these ambiguities. The metastable gamma-Fe2O3 variety is selectively formed at low Fe/Si atomic ratio (ca. 0.20) and when a low calcination temperature is used (773 or 873 K followed by quenching to room temperature once the targeted temperature is reached). The small size dispersion of the patterned nanoparticles, suggested on a local scale by TEM, is confirmed statistically by magnetic measurements. The nanoparticles have a superparamagnetic behavior around room temperature. Their magnetic moments (from 220 to 370 mB), their sizes (from 4.0 to 4.8 nm), and their blocking temperatures (from 36 to 58 K) increase with the silica template mesopore diameter. Their magnetic properties are compared to those of standard gamma-Fe2O3 nanoparticles of similar size, obtained by coprecipitation in water and stabilized by a citrate coating.  相似文献   

14.
Cs(3)Mn(2)O(4), a new member of the small family of ternary manganese (II/III) mixed-valent compounds, has been synthesized via the azide/nitrate route and studied using powder and single crystal X-ray diffraction, magnetic susceptibility measurements and density functional theory (DFT). Its crystal structure (P2(1)/c, Z = 8, a = 1276.33(1) pm, b = 1082.31(2) pm, c = 1280.29(2) pm, β = 118.390(2)°) is based on one-dimensional MnO(2)(1.5-) chains built up from edge-sharing MnO(4) tetrahedra. The title compound is the first example of an intrinsically doped transition metalate of the series A(x)MnO(2), (A = alkali metal) where a complete 1:1 charge ordering of Mn(2+) and Mn(3+) is observed along the chains (-Mn(2+)-Mn(3+)-Mn(2+)-Mn(3+)-). From the magnetic point of view it basically consists of ferrimagnetic MnO(2) chains, where the Mn(2+) and Mn(3+) ions are strongly antiferromagnetically coupled up to high temperatures. Very interestingly, their long-range three-dimensional ordering below the Néel temperature (T(N)) ~12 K give rise to conspicuous field dependent magnetic ordering phenomena, for which we propose a consistent picture based on the change from antiferromagnetic to ferromagnetic coupling between the chains. Electronic structure calculations confirm the antiferromagnetic ordering as the ground state for Cs(3)Mn(2)O(4) and ferrimagnetic ordering as its nearly degenerate state.  相似文献   

15.
New synthesis procedures are described to tetranuclear manganese carboxylate complexes containing the [Mn(4)O(2)](8+) or [Mn(4)O(3)X](6+) (X(-) = MeCO(2)(-), F(-), Cl(-), Br(-), NO(3)(-)) core. These involve acidolysis reactions of [Mn(4)O(3)(O(2)CMe)(4)(dbm)(3)] (1; dbm is the anion of dibenzoylmethane) or [Mn(4)O(2)(O(2)CEt)(6)(dbm)(2)] (8) with HX (X(-) = F(-), Cl(-), Br(-), NO(3)(-)); high-yield routes to 1 and 8 are also described. The X(-) = NO(3)(-) complexes [Mn(4)O(3)(NO(3))(O(2)CR)(3)(R'(2)dbm)(3)] (R = Me, R' = H (6); R = Me, R' = Et (7); R = Et, R' = H (12)) represent the first synthesis of the [Mn(4)O(3)(NO(3))](6+) core, which contains an unusual eta(1):mu(3)-NO(3)(-) group. Treatment of known [Mn(4)O(2)(O(2)CEt)(7)(bpy)(2)](ClO(4)) with HNO(3) gives [Mn(4)O(2)(NO(3))(O(2)CEt)(6)(bpy)(2)](ClO(4)) (15) containing a eta(1):eta(1):mu-NO(3)(-) group bridging the two body Mn(III) ions of the [Mn(4)O(2)](8+) butterfly core. Complex 7 x 4CH(2)Cl(2) crystallizes in space group P2(1)2(1)2(1) with (at -168 degrees C) a = 21.110(3) A, b = 22.183(3) A, c = 15.958(2) A, Z = 4, and V = 7472.4(3) A(3). Complex 15 x (3)/(2)CH(2)Cl(2) crystallizes in space group P2(1)/c with (at -165 degrees C) a = 26.025(4) A, b = 13.488(2) A, c = 32.102(6) A, beta = 97.27(1) degrees, Z = 8, and V = 11178(5) A(3). Complex 7 contains a [Mn(4)(mu(3)-O)(3)(mu(3)-NO(3))](6+) core (3Mn(III), Mn(IV)) as seen for previous [Mn(4)O(3)X](6+) complexes. Complex 15 contains a butterfly [Mn(4)(mu(3)-O)(2)](8+) core. (1)H NMR spectra have been recorded for all complexes reported in this work and the various resonances assigned. All complexes retain their structural integrity on dissolution in chloroform and dichloromethane. Magnetic susceptibility (chi(M)) data were collected on 12 in the 5-300 K range in a 10.0 kG (1 T) field. Fitting of the data to the theoretical chi(M) vs T expression appropriate for a [Mn(4)O(3)X](6+) complex of C(3)(v)() symmetry gave J(34) = -23.9 cm(-)(1), J(33) = 4.9 cm(-)(1), and g = 1.98, where J(34) and J(33) refer to the Mn(III)Mn(IV) and Mn(III)Mn(III) pairwise exchange interactions, respectively. The ground state of the molecule is S = 9/2, as found previously for other [Mn(4)O(3)X](6+) complexes. This was confirmed by magnetization data collected at various fields and temperatures. Fitting of the data gave S = 9/2, D = -0.45 cm(-1), and g = 1.96, where D is the axial zero-field splitting parameter.  相似文献   

16.
Ce0.6Mn0.4O2 catalysts with different sources of manganese and Ce0.6-xZrxMn0.4O2 mixed oxide catalysts were prepared by coprecipitation method and were characterized by N2 adsorption-desorption,TPR,XRD,and XPS techniques.The activities of the prepared catalysts for ethyl acetate combustion,and the effects of calcination temperature and space velocity on catalytic activity were investigated.The results showed that partial replacement of Mn(NO3)2 with KMnO4 as sources of manganese could improve activities of catalysts.Ce0.45Zr0.15Mn0.4O2 catalyst exhibited the best catalytic activity and high thermal stability,e.g.,T90 could be still below 210℃ even if space velocity was up to 20000h-1.  相似文献   

17.
Two novel Mn12 derivatives [Mn12O12(O2CC[triple bond]CH)16(H2O)4] x 3H2O (1) and [Mn12(O2CC[triple bond]CC6H5)16(H2O)4] x 3H2O (2) have been prepared and characterized. Magnetic measurements confirm that both function as single-molecule magnets (SMM), showing frequency-dependent out-of-phase AC susceptibility signals and magnetization hysteresis curves. Thermal stability studies of both complexes were first conducted in the solid state. While complex 1 undergoes a sudden exothermal decomposition at T(onset) = 118 degrees C, complex 2 exhibits a higher stability. Thermolysis reaction of 1 was hence assessed in solution to yield dark red crystals of a two-dimensional Mn(II)-based co-ordination polymer [Mn3(O2CC[triple bond]CH)6(H2O)4] x 2H2O (3), which corresponds to an extended sheet-like structure that crystallizes in the monoclinic space group P2(1)/n; a = 9.2800(2) angstroms, b = 9.4132(2) angstroms, c = 14.9675(3) angstroms, beta = 99.630(1) degrees, and Z = 2. Finally, the magnetic properties of complex 3 have been studied on an oriented single crystal over two different orientations of the reciprocal vector versus the external field.  相似文献   

18.
Hsieh WY  Liu S 《Inorganic chemistry》2005,44(6):2031-2038
This report describes the synthesis, characterization, and X-ray crystal structures of two Mn(III) complexes, Mn(DMHP)3 x 12H2O and Mn(DMHP)2Cl x 0.5H2O (DMHP = 1,2-dimethyl-3-hydroxy-4-pyridinone). Mn(DMHP)2Cl was prepared from the reaction of Mn(II) chloride with 2 equiv of DMHP under reflux in the presence of triethylamine. Mn(DMHP)3 was obtained by reacting Mn(II) acetate with 3 equiv of DMHP in the presence of sodium acetate. Mn(DMHP)3 could also be prepared by reacting Mn(OAc)3 x 2H2O with 3 equiv of DMHP in the presence of triethylamine. Both Mn(III) complexes have been characterized by elemental analysis, infrared spectroscopy, electronic paramagnetic resonance, electrospray ionization spectroscopy, electrochemical method, and X-ray crystallography. The X-ray crystal structure of Mn(DMHP)2Cl x 0.5H2O revealed a rare example of five-coordinated Mn(III) complexes with two bidentate ligands and a square pyramidal coordination geometry. Surprisingly, the average Mn-O (hydroxy) bond distance in Mn(DMHP)2Cl x 0.5H2O is approximately 0.025 A longer than that of the average Mn-O (carbonyl) bond, suggesting an extensive delocalization of electrons in the two pyridinone rings. The structure of Mn(DMHP)3 x 12H2O, a rare example of six-coordinate high-spin Mn(III) complexes without Jahn-Teller distortion, is isostructural to M(DMHP)3 x 12H2O (M = Al, Ga, Fe, and In). The electrochemical data for Mn(DMHP)3 suggests that the Mn(III) oxidation state is highly stabilized by three DMHP ligands. DMHP has the potential as a chelator for the removal of excess intracellular Mn and the treatment of chronic Mn toxicity.  相似文献   

19.
Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles   总被引:16,自引:0,他引:16  
High-temperature solution phase reaction of iron(III) acetylacetonate, Fe(acac)(3), with 1,2-hexadecanediol in the presence of oleic acid and oleylamine leads to monodisperse magnetite (Fe(3)O(4)) nanoparticles. Similarly, reaction of Fe(acac)(3) and Co(acac)(2) or Mn(acac)(2) with the same diol results in monodisperse CoFe(2)O(4) or MnFe(2)O(4) nanoparticles. Particle diameter can be tuned from 3 to 20 nm by varying reaction conditions or by seed-mediated growth. The as-synthesized iron oxide nanoparticles have a cubic spinel structure as characterized by HRTEM, SAED, and XRD. Further, Fe(3)O(4) can be oxidized to Fe(2)O(3), as evidenced by XRD, NEXAFS spectroscopy, and SQUID magnetometry. The hydrophobic nanoparticles can be transformed into hydrophilic ones by adding bipolar surfactants, and aqueous nanoparticle dispersion is readily made. These iron oxide nanoparticles and their dispersions in various media have great potential in magnetic nanodevice and biomagnetic applications.  相似文献   

20.
Highly water-dispersible Mn(3)O(4) nanocrystals with well-controlled size, size distribution and high crystallinity have been successfully synthesized through a modified polyol process. Poly(acrylic acid) is used as the capping agent, conferring upon the particles high water-dispersion, of which the carboxylate groups partially bind to the nanocrystal surface and the uncoordinated carboxylate groups extend into water. The water-dispersible Mn(3)O(4) nanocrystals can be further transferred to nonpolar solvent by linking oleylamine molecules through electrostatic interaction. The as-prepared Mn(3)O(4) nanocrystals exhibit ferromagnetic behavior at low temperature and weak paramagnetic behavior at room temperature. The Curie-Weiss temperature and the blocking temperature are 40 K and 32 K, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号