首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The reaction of Mn(O(2)CPh)(2).2H(2)O and PhCO(2)H in EtOH/MeCN with NBu(n)(4)MnO(4) gives (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(9)(H(2)O)] (4) in high yield (85-95%). Complex 4 crystallizes in monoclinic space group P2(1)/c with the following unit cell parameters at -129 degrees C: a = 17.394(3) ?, b = 19.040(3) ?, c = 25.660(5) ?, beta = 103.51(1) degrees, V = 8262.7 ?(3), Z = 4; the structure was refined on F to R (R(w)) = 9.11% (9.26%) using 4590 unique reflections with F > 2.33sigma(F). The anion of 4 consists of a [Mn(4)(&mgr;(3)-O)(2)](8+) core with a "butterfly" disposition of four Mn(III) atoms. In addition to seven bridging PhCO(2)(-) groups, there is a chelating PhCO(2)(-) group at one "wingtip" Mn atom and terminal PhCO(2)(-) and H(2)O groups at the other. Complex 4 is an excellent steppingstone to other [Mn(4)O(2)]-containing species. Treatment of 4 with 2,2-diethylmalonate (2 equiv) leads to isolation of (NBu(n)(4))(2)[Mn(8)O(4)(O(2)CPh)(12)(Et(2)mal)(2)(H(2)O)(2)] (5) in 45% yield after recrystallization. Complex 5 is mixed-valent (2Mn(II),6Mn(III)) and contains an [Mn(8)O(4)](14+) core that consists of two [Mn(4)O(2)](7+) (Mn(II),3Mn(III)) butterfly units linked together by one of the &mgr;(3)-O(2)(-) ions in each unit bridging to one of the body Mn atoms in the other unit, and thus converting to &mgr;(4)-O(2)(-) modes. The Mn(II) ions are in wingtip positions. The Et(2)mal(2)(-) groups each bridge two wingtip Mn atoms from different butterfly units, providing additional linkage between the halves of the molecule. Complex 5.4CH(2)Cl(2) crystallizes in monoclinic space group P2(1)/c with the following unit cell parameters at -165 degrees C: a = 16.247(5) ?, b = 27.190(8) ?, c = 17.715(5) ?, beta = 113.95(1) degrees, V = 7152.0 ?(3), Z = 4; the structure was refined on F to R (R(w)) = 8.36 (8.61%) using 4133 unique reflections with F > 3sigma(F). The reaction of 4 with 2 equiv of bpy or picolinic acid (picH) yields the known complex Mn(4)O(2)(O(2)CPh)(7)(bpy)(2) (2), containing Mn(II),3Mn(III), or (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(7)(pic)(2)] (6), containing 4Mn(III). Treatment of 4 with dibenzoylmethane (dbmH, 2 equiv) gives the mono-chelate product (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(8)(dbm)] (7); ligation of a second chelate group requires treatment of 7 with Na(dbm), which yields (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(7)(dbm)(2)] (8). Complexes 7 and 8 both contain a [Mn(4)O(2)](8+) (4Mn(III)) butterfly unit. Complex 7 contains chelating dbm(-) and chelating PhCO(2)(-) at the two wingtip positions, whereas 8 contains two chelating dbm(-) groups at these positions, as in 2 and 6. Complex 7.2CH(2)Cl(2) crystallizes in monoclinic space group P2(1) with the following unit cell parameters at -170 degrees C: a = 18.169(3) ?, b = 19.678(4) ?, c = 25.036(4) ?, beta = 101.49(1) degrees, V = 8771.7 ?(3), Z = 4; the structure was refined on F to R (R(w)) = 7.36% (7.59%) using 10 782 unique reflections with F > 3sigma(F). Variable-temperature magnetic susceptibility studies have been carried out on powdered samples of complexes 2 and 5 in a 10.0 kG field in the 5.0-320.0 K range. The effective magnetic moment (&mgr;(eff)) for 2 gradually decreases from 8.61 &mgr;(B) per molecule at 320.0 K to 5.71 &mgr;(B) at 13.0 K and then increases slightly to 5.91 &mgr;(B) at 5.0 K. For 5, &mgr;(eff) gradually decreases from 10.54 &mgr;(B) per molecule at 320.0 K to 8.42 &mgr;(B) at 40.0 K, followed by a more rapid decrease to 6.02 &mgr;(B) at 5.0 K. On the basis of the crystal structure of 5 showing the single Mn(II) ion in each [Mn(4)O(2)](7+) subcore to be at a wingtip position, the Mn(II) ion in 2 was concluded to be at a wingtip position also. Employing the reasonable approximation that J(w)(b)(Mn(II)/Mn(III)) = J(w)(b)(Mn(III)/M(III)), where J(w)(b) is the magnetic exchange interaction between wingtip (w) and body (b) Mn ions of the indicated oxidation state, a theoretical chi(M) vs T expression was derived and used to fit the experimental molar magnetic susceptibility (chi(M)) vs T data. The obtained fitting parameters were J(w)(b) = -3.9 cm(-)(1), J(b)(b) = -9.2 cm(-)(1), and g = 1.80. These values suggest a S(T) = (5)/(2) ground state spin for 2, which was confirmed by magnetization vs field measurements in the 0.5-50.0 kG magnetic field range and 2.0-30.0 K temperature range. For complex 5, since the two bonds connecting the two [Mn(4)O(2)](7+) units are Jahn-Teller elongated and weak, it was assumed that complex 5 could be treated, to a first approximation, as consisting of weakly-interacting halves; the magnetic susceptibility data for 5 at temperatures >/=40 K were therefore fit to the same theoretical expression as used for 2, and the fitting parameters were J(w)(b) = -14.0 cm(-)(1) and J(b)(b) = -30.5 cm(-)(1), with g = 1.93 (held constant). These values suggest an S(T) = (5)/(2) ground state spin for each [Mn(4)O(2)](7+) unit of 5, as found for 2. The interactions between the subunits are difficult to incorporate into this model, and the true ground state spin value of the entire Mn(8) anion was therefore determined by magnetization vs field studies, which showed the ground state of 5 to be S(T) = 3. The results of the studies on 2 and 5 are considered with respect to spin frustration effects within the [Mn(4)O(2)](7+) units. Complexes 2 and 5 are EPR-active and -silent, respectively, consistent with their S(T) = (5)/(2) and S(T) = 3 ground states, respectively.  相似文献   

2.
The trinuclear manganese complex [Mn(3)O(4)(phen)(4)(H(2)O)(2)](NO(3))(4).2.5H(2)O, 1 (where, phen = 1,10-phenanthroline), has been synthesized by the Ce(IV) oxidation of a concentrated solution of manganese(II) acetate and phen in 1.6 N nitric acid. The complex crystallizes in the triclinic space group P&onemacr; with a = 10.700(2) ?, b = 12.643(3) ?, c = 20.509(4) ?, alpha = 78.37(3) degrees, beta = 83.12(3) degrees, gamma = 82.50(3) degrees, and Z = 2. The structure was solved by direct methods and refined by least-squares techniques to the conventional R (R(w)) factors of 0.055 (0.076) based on 4609 unique reflections with F(o) >/= 6.0sigma(F(o)). The structure of the cation consists of an oxo-bridged Mn(3)O(4)(4+) core, with the geometry of the manganese atoms being octahedral. The coordination polyhedron of one of the manganese atoms (Mn(1)) consists of two &mgr; oxo ligands and two pairs of nitrogen atoms of two phen moieties, whereas that of each of the remaining two manganese atoms consists of three &mgr;-oxo ligands, two nitrogen atoms of a phen moiety, and the oxygen atom of a water molecule. The complex represents the second example for water coordination to manganese(IV) centers in complexes with a Mn(3)O(4)(4+) core. Optical spectra in ligand buffer (pH 4.5) reveal complete conversion of the complex into a Mn(III)Mn(IV) species. The observed room-temperature (298 K) magnetic moment of 3.75 &mgr;(B) indicates the presence of strong antiferromagnetic coupling in the complex.  相似文献   

3.
Lin CH  Chen CG  Tsai ML  Lee GH  Liaw WF 《Inorganic chemistry》2008,47(23):11435-11443
The reaction of MnBr(2) and [PPN](2)[S,S-C(6)H(3)-R] (1:2 molar ratio) in THF yielded [(THF)Mn(S,S-C(6)H(3)-R)(2)](-) [R = H (1a), Me (1b); THF = tetrahydrofuran]. Formation of the dimeric [Mn(S,S-C(6)H(3)-R)(2)](2)(2-) [R = H (2a), Me (2b)] was presumed to compensate for the electron-deficient Mn(III) core via two thiolate bridges upon dissolution of complexes 1a and 1b in CH(2)Cl(2). Complex 2a displays antiferromagnetic coupling interaction between two Mn(III) centers (J = -52 cm(-1)), with the effective magnetic moment (mu(eff)) increasing from 0.85 mu(B) at 2.0 K to 4.86 mu(B) at 300 K. The dianionic manganese(II) thiolate complexes [Mn(S,S-C(6)H(3)-R)(2)](2-) [R = H (3a), Me (3b)] were isolated upon the addition of [BH(4)](-) into complexes 1a and 1b or complexes 2a and 2b, respectively. The anionic mononuclear {Mn(NO)}(5) thiolatonitrosylmanganese complexes [(NO)Mn(S,S-C(6)H(3)-R)(2)](-) [R = H (4a), Me (4b)] were obtained from the reaction of NO(g) with the anionic complexes 1a and 1b, respectively, and the subsequent reduction of complexes 4a and 4b yielded the mononuclear {Mn(NO)}(6) [(NO)Mn(S,S-C(6)H(3)-R)(2)](2-) [R = H (5a), Me (5b)]. X-ray structural data, magnetic susceptibility measurement, and magnetic fitting results imply that the electronic structure of complex 4a is best described as a resonance hybrid of [(L)(L)Mn(III)(NO(*))](-) and [(L)(L(*))Mn(III)(NO(-))](-) (L = 1,2-benzenedithiolate) electronic arrangements in a square-pyramidal ligand field. The lower IR v(NO) stretching frequency of complex 5a, compared to that of complex 4a (shifting from 1729 cm(-1) in 4a to 1651 cm(-1) in 5a), supports that one-electron reduction occurs in the {(L)(L(*))Mn(III)} core upon reduction of complex 4a.  相似文献   

4.
The first high nuclearity, mixed-metal Bi(III)/Mn(IV) and Bi(III)/Mn(III) complexes are reported. The former complexes are [Bi(2)Mn(IV)(6)O(9)(O(2)CEt)(9)(HO(2)CEt)(NO(3))(3)] (1) and [Bi(2)Mn(IV)(6)O(9)(O(2)CPh)(9)(HO(2)CPh)(NO(3))(3)] (2) and were obtained from the comproportionation reaction between Mn(O(2)CR)(2) and MnO(4)(-) in a 10:3 ratio in the presence of Bi(NO(3))(3) (3 equiv) in either a H(2)O/EtCO(2)H (1) or MeCN/PhCO(2)H (2) solvent medium. The same reaction that gives 2, but with Bi(O(2)CMe)(3) and MeNO(2) in place of Bi(NO(3))(3) and MeCN, gave the lower oxidation state product [BiMn(III)(10)O(8)(O(2)CPh)(17)(HO(2)CPh)(H(2)O)] (3). Complexes 1 and 2 are near-isostructural and possess an unusual and high symmetry core topology consisting of a Mn(IV)(6) wheel with two central Bi(III) atoms capping the wheel on each side. In contrast, the [BiMn(III)(10)O(8)](17+) core of 3 is low symmetry, comprising a [BiMn(3)(μ(3)-O)(2)](8+) butterfly unit, four [BiMn(3)(μ(4)-O)](10+) tetrahedra, and two [BiMn(2)(μ(3)-O)](7+) triangles all fused together by sharing common Mn and Bi vertices. Variable-temperature, solid-state dc and ac magnetization data on 1-3 in the 1.8-300 K range revealed that 1 and 2 possess an S = 0 ground state spin, whereas 3 possesses an S = 2 ground state. The work offers the possibility of access to molecular analogs of the multifunctional Bi/Mn/O solids that are of such great interest in materials science.  相似文献   

5.
Saha A  Abboud KA  Christou G 《Inorganic chemistry》2011,50(24):12774-12784
The syntheses, crystal structures, and magnetochemical characterization are reported for the new mixed-valent Mn clusters [Mn(2)(II)Mn(III)(O(2)CMe)(2)(edteH(2))(2)](ClO(4)) (1), [Mn(II)(2)Mn(III)(2)(edteH(2))(2)(hmp)(2)Cl(2)](Mn(II)Cl(4)) (2), [Mn(III)(6)O(2)(O(2)CBu(t))(6)(edteH)(2)(N(3))(2)] (3), [Na(2)Mn(III)(8)Mn(II)(2)O(4)(OMe)(2)(O(2)CEt)(6)(edte)(2)(N(3))(6)] (4), and (NEt(4))(2)[Mn(8)(III)Mn(2)(II)O(4)(OH)(2)-(O(2)CEt)(6)(edte)(2)(N(3))(6)](5), where edteH(4) is N,N,N',N'-tetrakis-(2-hydroxyethyl)ethylenediamine and hmpH is 2-(hydroxymethyl)pyridine. 1-5 resulted from a systematic exploration of the effect of different Mn sources, carboxylates, the presence of azide, and other conditions, on the Mn/edteH(4) reaction system. The core of 1 consists of a linear Mn(II)Mn(III)Mn(II) unit, whereas that of 2 is a planar Mn(4) rhombus within a [Mn(II)(2)Mn(III)(2)(μ(3)-OR)(2)] incomplete-dicubane unit. The core of 3 comprises a central [Mn(III)(4)(OR)(2)] incomplete-dicubane on either side of which is edge-fused a triangular [Mn(III)(3)(μ(3)-O)] unit. The cores of 4 and 5 are similar and consist of a central [Mn(II)(2)Mn(III)(2)(μ(3)-OR)(2)] incomplete-dicubane on either side of which is edge-fused a distorted [Mn(II)Mn(III)(3)(μ(3)-O)(2)(μ(3)-OR)(2)] cubane unit. Variable-temperature, solid-state direct current (dc) and alternating current (ac) magnetization studies were carried out on 1-5 in the 5.0-300 K range, and they established the complexes to have ground state spin values of S = 3 for 1, S = 9 for 2, and S = 4 for 3. The study of 3 provided an interesting caveat of potential pitfalls from particularly low-lying excited states. For 4 and 5, the ground state is in the S = 0-4 range, but its identification is precluded by a high density of low-lying excited states.  相似文献   

6.
Reaction between the Os(VI)-hydrazido complex, trans-[Os(VI)(tpy)(Cl)(2)(NN(CH(2))(4)O)](2+) (tpy = 2,2':6',2"-terpyridine and O(CH(2))(4)N(-) = morpholide), and a series of N- or O-bases gives as products the substituted Os(VI)-hydrazido complexes, trans-[Os(VI)(4'-RNtpy)(Cl)(2)(NN(CH(2))(4)O)](2+) or trans-[Os(VI)(4'-ROtpy)(Cl)(2)(NN(CH(2))(4)O)](2+) (RN(-) = anilide (PhNH(-)); S,S-diphenyl sulfilimide (Ph(2)S=N(-)); benzophenone imide (Ph(2)C=N(-)); piperidide ((CH(2))(5)N(-)); morpholide (O(CH(2))(4)N(-)); ethylamide (EtNH(-)); diethylamide (Et(2)N(-)); and tert-butylamide (t-BuNH(-)) and RO(-) = tert-butoxide (t-BuO(-)) and acetate (MeCO(2)(-)). The rate law for the formation of the morpholide-substituted complex is first order in trans-[Os(VI)(tpy)(Cl)(2)(NN(CH(2))(4)O)](2+) and second order in morpholine with k(morp)(25 degrees C, CH(3)CN) = (2.15 +/- 0.04) x 10(6) M(-)(2) s(-)(1). Possible mechanisms are proposed for substitution at the 4'-position of the tpy ligand by the added nucleophiles. The key features of the suggested mechanisms are the extraordinary electron withdrawing effect of Os(VI) on tpy and the ability of the metal to undergo intramolecular Os(VI) to Os(IV) electron transfer. These substituted Os(VI)-hydrazido complexes can be electrochemically reduced to the corresponding Os(V), Os(IV), and Os(III) forms. The Os-N bond length of 1.778(4) A and Os-N-N angle of 172.5(4) degrees in trans-[Os(VI)(4'-O(CH(2))(4)Ntpy)(Cl)(2)(NN(CH(2))(4)O)](2+) are consistent with sp-hybridization of the alpha-nitrogen of the hydrazido ligand and an Os-N triple bond. The extensive ring substitution chemistry implied for the Os(VI)-hydrazido complexes is discussed.  相似文献   

7.
The Mo(3)SnS(4)(6+) single cube is obtained by direct addition of Sn(2+) to [Mo(3)S(4)(H(2)O)(9)](4+). UV-vis spectra of the product (0.13 mM) in 2.00 M HClO(4), Hpts, and HCl indicate a marked affinity of the Sn for Cl(-), with formation of the more strongly yellow [Mo(3)(SnCl(3))S(4)(H(2)O)(9)](3+) complex complete in as little as 0.050 M Cl(-). The X-ray crystal structure of (Me(2)NH(2))(6)[Mo(3)(SnCl(3))S(4)(NCS)(9)].0.5H(2)O has been determined and gives Mo-Mo (mean 2.730 ?) and Mo-Sn (mean 3.732 ?) distances, with a difference close to 1 ?. The red-purple double cube cation [Mo(6)SnS(8)(H(2)O)(18)](8+) is obtained by reacting Sn metal with [Mo(3)S(4)(H(2)O)(9)](4+). The double cube is also obtained in approximately 50% yield by BH(4)(-) reduction of a 1:1 mixture of [Mo(3)SnS(4)(H(2)O)(10)](6+) and [Mo(3)S(4)(H(2)O)(9)](4+). Conversely two-electron oxidation of [Mo(6)SnS(8)(H(2)O)(18)](8+) with [Co(dipic)(2)](-) or [Fe(H(2)O(6)](3+) gives the single cube [Mo(3)SnS(4)(H(2)O)(12)](6+) and [Mo(3)S(4)(H(2)O)(9)](4+) (up to 70% yield), followed by further two-electron oxidation to [Mo(3)S(4)(H(2)O)(9)](4+) and Sn(IV). The kinetics of the first stages have been studied using the stopped-flow method and give rate laws first order in [Mo(6)SnS(8)(H(2)O)(18)](8+) and the Co(III) or Fe(III) oxidant. The oxidation with [Co(dipic)(2)](-) has no [H(+)] dependence, [H(+)] = 0.50-2.00 M. With Fe(III) as oxidant, reaction steps involving [Fe(H(2)O)(6)](3+) and [Fe(H(2)O)(5)OH](2+) are implicated. At 25 degrees C and I = 2.00 M (Li(pts)) k(Co) is 14.9 M(-)(1) s(-)(1) and k(a) for the reaction of [Fe(H(2)O)(6)](3+) is 0.68 M(-)(1) s(-)(1) (both outer-sphere reactions). Reaction of Cu(2+) with the double but not the single cube is observed, yielding [Mo(3)CuS(4)(H(2)O)(10)](5+). A redox-controlled mechanism involving intermediate formation of Cu(+) and [Mo(3)S(4)(H(2)O)(9)](4+) accounts for the changes observed.  相似文献   

8.
Nitrosyl complexes with {Ru-NO} (6) and {Ru-NO} (7) configurations have been isolated in the framework of [Ru(trpy)(L)(NO)] ( n+ ) [trpy = 2,2':6',2'-terpyridine, L = 2-phenylimidazo[4,5- f]1,10-phenanthroline] as the perchlorate salts [ 4](ClO 4) 3 and [ 4](ClO 4) 2, respectively. Single crystals of protonated material [ 4-H (+)](ClO 4) 4.2H 2O reveal a Ru-N-O bond angle of 176.1(7) degrees and triply bonded N-O with a 1.127(9) A bond length. Structures were also determined for precursor compounds of [ 4] (3+) in the form of [Ru(trpy)(L)(Cl)](ClO 4).4.5H 2O and [Ru(trpy)(L-H)(CH 3CN)](ClO 4) 3.H 2O. In agreement with largely NO centered reduction, a sizable shift in nu(NO) frequency was observed on moving from [ 4] (3+) (1953 cm (-1)) to [ 4] (2+) (1654 cm (-1)). The Ru (II)-NO* in isolated or electrogenerated [ 4] (2+) exhibits an EPR spectrum with g 1 = 2.020, g 2 = 1.995, and g 3 = 1.884 in CH 3CN at 110 K, reflecting partial metal contribution to the singly occupied molecular orbital (SOMO); (14)N (NO) hyperfine splitting ( A 2 = 30 G) was also observed. The plot of nu(NO) versus E degrees ({RuNO} (6) --> {RuNO} (7)) for 12 analogous complexes [Ru(trpy)(L')(NO)] ( n+ ) exhibits a linear trend. The electrophilic Ru-NO (+) species [ 4] (3+) is transformed to the corresponding Ru-NO 2 (-) system in the presence of OH (-) with k = 2.02 x 10 (-4) s (-1) at 303 K. In the presence of a steady flow of dioxygen gas, the Ru (II)-NO* state in [ 4] (2+) oxidizes to [ 4] (3+) through an associatively activated pathway (Delta S++ = -190.4 J K (-1) M (-1)) with a rate constant ( k [s (-1)]) of 5.33 x 10 (-3). On irradiation with light (Xe lamp), the acetonitrile solution of paramagnetic [Ru(trpy)(L)(NO)] (2+) ([ 4] (2+)) undergoes facile photorelease of NO ( k NO = 2.0 x 10 (-1) min (-1) and t 1/2 approximately 3.5 min) with the concomitant formation of the solvate [Ru (II)(trpy)(L)(CH 3CN)] (2+) [ 2'] (2+). The photoreleased NO can be trapped as an Mb-NO adduct.  相似文献   

9.
X-ray crystal structures are reported for the following complexes: [Ru(2)Cl(3)(tacn)(2)](PF(6))(2).4H(2)O (tacn = 1,4,7-triazacyclononane), monoclinic P2(1)/n, Z = 4, a = 14.418(8) ?, b = 11.577(3) ?, c = 18.471(1) ?, beta = 91.08(5) degrees, V = 3082 ?(3), R(R(w)) = 0.039 (0.043) using 4067 unique data with I > 2.5sigma(I) at 293 K; [Ru(2)Br(3)(tacn)(2)](PF(6))(2).2H(2)O, monoclinic P2(1)/a, Z = 4, a = 13.638(4) ?, b = 12.283(4) ?, c = 18.679(6) ?, beta = 109.19(2) degrees, V = 3069.5 ?(3), R(R(w)) = 0.052 (0.054) using 3668 unique data with I > 2.5sigma(I) at 293 K; [Ru(2)I(3)(tacn)(2)](PF(6))(2), cubic P2(1)/3, Z = 3, a = 14.03(4) ?, beta = 90.0 degrees, V = 2763.1(1) ?(3), R (R(w)) = 0.022 (0.025) using 896 unique data with I > 2.5sigma(I) at 293 K. All of the cations have cofacial bioctahedral geometries, although [Ru(2)Cl(3)(tacn)(2)](PF(6))(2).4H(2)O, [Ru(2)Br(3)(tacn)(2)](PF(6))(2).2H(2)O, and [Ru(2)I(3)(tacn)(2)](PF(6))(2) are not isomorphous. Average bond lengths and angles for the cofacial bioctahedral cores, [N(3)Ru(&mgr;-X)(3)RuN(3)](2+), are compared to those for the analogous ammine complexes [Ru(2)Cl(3)(NH(3))(6)](BPh(4))(2) and [Ru(2)Br(3)(NH(3))(6)](ZnBr(4)). The Ru-Ru distances in the tacn complexes are longer than those in the equivalent ammine complexes, probably as a result of steric interactions.  相似文献   

10.
Two transition-metal tetrathioarsenate complexes, [Mn(dien)(2)](n)[Mn(dien)AsS(4)](2n).4nH(2)O (1) with one-dimensional water chain and [Mn(en)(3)](2)[Mn(en)(2)AsS(4)][As(3)S(6)] (2) with mixed-valence As(3+)/As(5+) character, have been synthesized and structurally characterized. The tetrathioarsenate(V) anion acts as a novel mu(2)-eta(1),eta(2) ligand in 1 and as a chelating ligand in 2. The two compounds exhibit intriguing semiconducting properties (E(g) = 2.18 eV (1), 2.48 eV (2)) and strong photoluminescence with the emission maximum occurring around 440 nm.  相似文献   

11.
Interaction of the lacunary [alpha-XW(9)O(33)](9-) (X = As(III), Sb(III)) with Fe(3+) ions in acidic, aqueous medium leads to the formation of dimeric polyoxoanions, [Fe(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](6-) (X = As(III), Sb(III)) in high yield. X-ray single-crystal analyses were carried out on Na(6)[Fe(4)(H(2)O)(10)(beta-AsW(9)O(33))(2)] x 32H(2)O, which crystallizes in the monoclinic system, space group C2/m, with a = 20.2493(18) A, b = 15.2678(13) A, c = 16.0689(14) A, beta = 95.766(2) degrees, and Z = 2; Na(6)[Fe(4)(H(2)O)(10)(beta-SbW(9)O(33))(2)] x 32H(2)O is isomorphous with a = 20.1542(18) A, b = 15.2204(13) A, c = 16.1469(14) A, and beta = 95.795(2) degrees. The selenium and tellurium analogues are also reported, [Fe(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](4-) (X = Se(IV), Te(IV)). They are synthesized from sodium tungstate and a source of the heteroatom as precursors. X-ray single-crystal analysis was carried out on Cs(4)[Fe(4)(H(2)O)(10)(beta-SeW(9)O(33))(2)] x 21H(2)O, which crystallizes in the triclinic system, space group P macro 1, with a = 12.6648(10) A, b = 12.8247(10) A, c = 16.1588(13) A, alpha = 75.6540(10) degrees, beta = 87.9550(10) degrees, gamma = 64.3610(10) gamma, and Z = 1. All title polyanions consist of two (beta-XW(9)O(33)) units joined by a central pair and a peripheral pair of Fe(3+) ions leading to a structure with idealized C(2h) symmetry. It was also possible to synthesize the Cr(III) derivatives [Cr(4)(H(2)O)(10)(beta-XW(9)O(33))(2)](6-) (X = As(III), Sb(III)), the tungstoselenates(IV) [M(4)(H(2)O)(10)(beta-SeW(9)O(33))(2)]((16)(-)(4n)-) (M(n+) = Cr(3+), Mn(2+), Co(2+), Ni(2+), Zn(2+), Cd(2+), and Hg(2+)), and the tungstotellurates(IV) [M(4)(H(2)O)(10)(beta-TeW(9)O(33))(2)]((16-4n)-) (M(n+) = Cr(3+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), and Hg(2+)), as determined by FTIR. The electrochemical properties of the iron-containing species were also studied. Cyclic voltammetry and controlled potential coulometry aided in distinguishing between Fe(3+) and W(6+) waves. By variation of pH and scan rate, it was possible to observe the stepwise reduction of the Fe(3+) centers.  相似文献   

12.
Aoki C  Ishida T  Nogami T 《Inorganic chemistry》2003,42(23):7616-7625
A new chelating radical ligand 4ImNNH (2-(4-imidazolyl)-4,4,5,5-tetramethylimidazolin-1-oxyl 3-oxide) was prepared, and complexation with divalent transition metal salts gave complexes, [M(4ImNNH)(2)X(2)], which showed intermolecular ferromagnetic interaction in high probability (7 out of 10 paramagnetic compounds investigated here). The nitrate complexes (X = NO(3); M = Mn (1), Co (2), Ni (3), Cu (4)) crystallize isomorphously in monoclinic space group P2(1)/a. The equatorial positions are occupied with two 4ImNNH chelates and the nitrate oxygen atoms are located at the axial positions. Magnetic measurements revealed that the intramolecular exchange couplings in 1, 2, and 4 were antiferromagnetic, while that in 3 was ferromagnetic with 2J/k(B) = +85 K, where the spin Hamiltonian is defined as H = -2J(S(1).S(2) + S(2).S(3)) based on the molecular structures determined as the linear radical-metal-radical triads. The intramolecular ferromagnetic interaction in 3 is interpreted in terms of orthogonality between the radical pi and metal dsigma orbitals. Compounds 1-3 exhibited intermolecular ferromagnetic interaction ascribable to a two-dimensional hydrogen bond network parallel to the crystallographic ab plane. Complex 3 became an antiferromagnet below 3.4 K and exhibited a metamagnetic transition on applying a magnetic field of 5.5 kOe at 1.8 K. The complexes prepared from metal halides, [M(4ImNNH)(2)X(2)] (X = Cl, Br; M = Mn, Co, Ni, Cu), showed intramolecular antiferromagnetic interactions, which are successfully analyzed based on the radical-metal-radical system. The crystal structures determined here on 1-4, [Mn(4ImNNH)(2)Cl(2)], and [Cu(4ImNNH)(2)Br(2)] always have intermolecular hydrogen bonds of H(imidazole).X(axial ligand)-M, where X = NO(3), Cl, Br. This interaction seems to play an important role in molecular packing and presumably also in magnetic coupling.  相似文献   

13.
The previously unknown heteropolyoxometalates [gamma-SiO(4)W(10)O(32)(OH)Cr(2)(OOCR)(2)(OH(2))(2)](5-) (R = H, CH(3)) have been prepared by the reaction of [gamma-SiO(4)W(10)O(32)](8-) with [Cr(OH(2))(6)](3+) in formate or acetate buffer solution. Isolation of these new Cr(III)-substituted polyoxometalates was accomplished both as Cs(+) salts and as the Bu(4)N(+) salt for the acetate-containing anion. The compounds were characterized by elemental analysis, UV/vis, IR, and ESR spectroscopy, and cyclic voltammetry. The single-crystal X-ray structural analysis of (Bu(4)N)(3)H(2)[gamma-SiO(4)W(10)O(32)(OH)Cr(2)(OOCCH(3))(2)(OH(2))(2)].3H(2)O [P2(1)2(1)2(1); a = 17.608(12), b = 20.992(13), c = 24.464(11) ?; Z = 4; R = 0.057 for 6549 observed independent reflections] reveals that the two corner-linked CrO(6) octahedra are additionally bridged by two acetate groups, demonstrating the relationship to the well-studied oxo-centered trinuclear carboxylato complexes of Cr(III).  相似文献   

14.
NO[Al(OC(CF(3))(2)Ph)(4)] 1 and NO[Al(OC(CF(3))(3))(4)] 2 were obtained by the metathesis reaction of NO[SbF(6)] and the corresponding Li[Al(OR)(4)] salts in liquid sulfur dioxide solution in ca 40% (1) and 85% (2) isolated yield. 1 and 2, as well as Li[NO(3)] and N(2)O, were also given by the reaction of an excess of mixture of (90 mol%) NO, (10 mol%) NO(2) with Li[Al(OR)(4)] followed by extraction with SO(2). The unfavourable disproportionation reaction of 2NO(2)(g) to [NO](+)(g) and [NO(3)](-)(g)[DeltaH degrees = +616.2 kJ mol(-1)] is more than compensated by the disproportionation energy of 3NO(g) to N(2)O(g) and NO(2)(g)[DeltaH degrees =-155.4 kJ mol(-1)] and the lattice energy of Li[NO(3)](s)[U(POT)= 862 kJ mol(-1)]. Evidence is presented that the reaction proceeds via a complex of [Li](+) with NO, NO(2)(or their dimers) and N(2)O. NO(2) and Li[Al(OC(CF(3))(3))(4)] gave [NO(3)(NO)(3)][Al(OC(CF(3))(3))(4)](2), NO[Al(OC(CF(3))(3))(4)] and (NO(2))[Al(OC(CF(3))(3))(4)] products. The aluminium complex [Li[AlF(OC(CF(3))(2)Ph)(3)]](2) 3 was prepared by the thermal decomposition of Li[Al(OC(CF(3))(2)Ph)(4)]. Compounds 1 and 3 were characterized by single crystal X-ray structural analyses, 1-3 by elemental analyses, NMR, IR, Raman and mass spectra. Solid 1 contains [Al(OC(CF(3))(2)Ph)(4)](-) and [NO](+) weakly linked via donor acceptor interactions, while in the SO(2) solution there is an equilibrium between the associated [NO](+)[Al(OC(CF(3))(2)Ph)(4)](-) and separated solvated ions. Solid 2 contains essentially ionic [NO](+) and [Al(OC(CF(3))(3))(4)](-). Complex 3 consists of two [Li[AlF(OC(CF(3))(2)Ph)(3)]] units linked via fluorine lithium contacts. Compound 1 is unstable in the SO(2) solution and decomposes to yield [AlF(OC(CF(3))(2)Ph)(3)](-), [(PhC(CF(3))(2)O)(3)Al(mu-F)Al(OC(CF(3))(2)Ph)(3)](-) anions as well as (NO)C(6)H(4)C(CF(3))(2)OH, while compound 2 is stable in liquid SO(2). The [small nu](NO(+)) in 1 and [NO](+)(toluene)[SbCl(6)] are similar, implying similar basicities of [Al(OC(CF(3))(2)Ph)(4)](-) and toluene.  相似文献   

15.
Synthetic procedures are described that allow access to the [V(3)O(O(2)CR)(6)L(3)](ClO(4)) (R = various groups; L = pyridine (py), 4-picoline (pic) or 3,5-lutidine (lut)) family of complexes. Treatment of VCl(3)(THF)(3) with NaO(2)CR (R = Me, Et) in RCO(2)H/py, pic/MeCN, or CH(2)Cl(2) solution followed by addition of NBu(n)(4)ClO(4) leads to isolation of [V(3)O(O(2)CR)(6)L(3)](ClO(4)) salts in 47-95% yields. A similar procedure for R = C(6)H(5), C(6)H(4)-p-OMe, C(6)H(3)-m-Me(2), and C(6)H(4)-p-Cl but omitting addition of NaO(2)CR provides the corresponding benzoate or substituted-benzoate derivatives in 24-56% yields. The X-ray structure of [V(3)O(O(2)CEt)(6)(pic)(3)](ClO(4)) (4) shows the anion to consist of a [V(3)O](7+) triangular fragment with a &mgr;(3)-O(2)(-) ion in the V(3) plane; each triangular edge is bridged by two EtCO(2)(-) groups in their familiar syn,syn modes, and there is a terminal pic group on each V(III) completing distorted octahedral geometries at the metal atoms. The cation has imposed C(2) symmetry (isosceles V(3) triangle), the C(2) axis passing through one V atom and the central &mgr;(3)-O atom, but has D(3)(h)() virtual symmetry (equilateral V(3) triangle). Complex 4 crystallizes in monoclinic space group C2/c with the following unit cell dimensions at -171 degrees C: a = 13.935(2) ?, b = 18.323(2) ?, c = 17.470(2) ?, beta = 95.55(1) degrees, V = 4439.7 ?(3), Z = 4. The structure was solved using 2657 unique reflections with F > 3sigma(F) and refined on F to conventional R (R(w)) values of 0.058 (0.066). Variable-temperature, solid-state magnetic susceptibility measurements were made on complex 1 in the 5.01-280 K region in a 1 kG magnetic field. The effective magnetic moment (&mgr;(eff)) per V(3) unit decreases gradually from 4.64 &mgr;(B) at 280 K to 1.76 &mgr;(B) at 5.01 K. The data were fit to the theoretical expression for an isosceles V(III)(3) complex, and the fitting parameters were J = -18.0(7) cm(-)(1), J' = -10.4(4) cm(-)(1), and g = 1.985, with TIP held constant at 600 x 10(-)(6) cm(3) mol(-)(1); J' refers to the unique exchange interaction within the isosceles triangle. The ground state of complex 1 thus has S = 0.  相似文献   

16.
Reactions of Mn(II)(PF(6))(2) and Mn(II)(O(2)CCH(3))(2).4H(2)O with the tridentate facially capping ligand N,N-bis(2-pyridylmethyl)ethylamine (bpea) in ethanol solutions afforded the mononuclear [Mn(II)(bpea)](PF(6))(2) (1) and the new binuclear [Mn(2)(II,II)(mu-O(2)CCH(3))(3)(bpea)(2)](PF(6)) (2) manganese(II) compounds, respectively. Both 1 and 2 were characterized by X-ray crystallographic studies. Complex 1 crystallizes in the monoclinic system, space group P2(1)/n, with a = 11.9288(7) A, b = 22.5424(13) A, c =13.0773(7) A, alpha = 90 degrees, beta = 100.5780(10 degrees ), gamma = 90 degrees, and Z = 4. Crystals of complex 2 are orthorhombic, space group C222(1), with a = 12.5686(16) A, b = 14.4059(16) A, c = 22.515(3) A, alpha = 90 degrees, beta = 90 degrees, gamma = 90 degrees, and Z = 4. The three acetates bridge the two Mn(II) centers in a mu(1,3) syn-syn mode, with a Mn-Mn separation of 3.915 A. A detailed study of the electrochemical behavior of 1 and 2 in CH(3)CN medium has been made. Successive controlled potential oxidations at 0.6 and 0.9 V vs Ag/Ag(+) for a 10 mM solution of 2 allowed the selective and nearly quantitative formation of [Mn(III)(2)(mu-O)(mu-O(2)CCH(3))(2)(bpea)(2)](2+) (3) and [Mn(IV)(2)(mu-O)(2)(mu-O(2)CCH(3))(bpea)(2)](3+) (4), respectively. These results have shown that each substitution of an acetate group by an oxo group is induced by a two-electron oxidation of the corresponding dimanganese complexes. Similar transformations have been obtained if 2 is formed in situ either by direct mixing of Mn(2+) cations, bpea ligand, and CH(3)COO(-) anions with a 1:1:3 stoichiometry or by mixing of 1 and CH(3)COO(-) with a 1:1.5 stoichiometry. Associated electrochemical back-transformations were investigated. 2, 3, and the dimanganese [Mn(III)Mn(IV)(mu-O)(2)(mu-O(2)CCH(3))(bpea)(2)](2+) analogue (5) were also studied for their ability to disproportionate hydrogen peroxide. 2 is far more active compared to 3 and 5. The EPR monitoring of the catalase-like activity has shown that the same species are present in the reaction mixture albeit in slightly different proportions. 2 operates probably along a mechanism different from that of 3 and 5, and the formation of 3 competes with the disproportionation reaction catalyzed by 2. Indeed a solution of 2 exhibits the same activity as 3 for the disproportionation reaction of a second batch of H(2)O(2) indicating that 3 is formed in the course of the reaction.  相似文献   

17.
The synthesis of new dinuclear manganese(IV) complexes possessing the [Mn(IV)(2)(mu-O)(2)(mu-O(2)CMe)](3+) core and containing halide ions as terminal ligands is reported. [Mn(2)O(2)(O(2)CMe)Cl(2)(bpy)(2)](2)[MnCl(4)] (1; bpy = 2,2'-bipyridine) was prepared by sequential addition of [MnCl(3)(bpy)(H(2)O)] and (NBzEt(3))(2)[MnCl(4)] to a CH(2)Cl(2) solution of [Mn(3)O(4)(O(2)CMe)(4)(bpy)(2)]. The complex [Mn(IV)(2)O(2)(O(2)CMe)Cl(bpy)(2)(H(2)O)](NO(3))(2) (2) was obtained from a water/acetic acid solution of MnCl(2).4H(2)O, bpy, and (NH(4))(2)[Ce(NO(3))(6)], whereas the [Mn(IV)(2)O(2)(O(2)CR)X(bpy)(2)(H(2)O)](ClO(4))(2) [X = Cl(-) and R = Me (3), Et (5), or C(2)H(4)Cl (6); and X = F(-), R = Me (4)] were prepared by a slightly modified procedure that includes the addition of HClO(4). For the preparation of 4, MnF(2) was employed instead of MnCl(2).4H(2)O. [Mn(2)O(2)(O(2)CMe)Cl(2)(bpy)(2)](2)[MnCl(4)].2CH(2)Cl(2) (1.2CH(2)Cl(2)) crystallizes in the monoclinic space group C2/c with a = 21.756(2) A, b = 12.0587(7) A, c = 26.192(2) A, alpha = 90 degrees, beta = 111.443(2) degrees, gamma = 90 degrees, V = 6395.8(6) A(3), and Z = 4. [Mn(2)O(2)(O(2)CMe)Cl(H(2)O)(bpy)(2)](NO(3))(2).H(2)O (2.H(2)O) crystallizes in the triclinic space group Ponemacr; with a = 11.907(2) A, b = 12.376(2) A, c = 10.986(2) A, alpha = 108.24(1) degrees, beta = 105.85(2) degrees, gamma = 106.57(1) degrees, V = 1351.98(2) A(3), and Z = 2. [Mn(2)O(2)(O(2)CMe)Cl(H(2)O)(bpy)(2)](ClO(4))(2).MeCN (3.MeCN) crystallizes in the triclinic space group Ponemacr; with a = 11.7817(7) A, b = 12.2400(7) A, c = 13.1672(7) A, alpha = 65.537(2) degrees, beta = 67.407(2) degrees, gamma = 88.638(2) degrees, V = 1574.9(2) A(3), and Z = 2. The cyclic voltammogram (CV) of 1 exhibits two processes, an irreversible oxidation of the [MnCl(4)](2)(-) at E(1/2) approximately 0.69 V vs ferrocene and a reversible reduction at E(1/2) = 0.30 V assigned to the [Mn(2)O(2)(O(2)CMe)Cl(2)(bpy)(2)](+/0) couple (2Mn(IV) to Mn(IV)Mn(III)). In contrast, the CVs of 2 and 3 show only irreversible reduction features. Solid-state magnetic susceptibility (chi(M)) data were collected for complexes 1.1.5H(2)O, 2.H(2)O, and 3.H(2)O in the temperature range 2.00-300 K. The resulting data were fit to the theoretical chi(M)T vs T expression for a Mn(IV)(2) complex derived by use of the isotropic Heisenberg spin Hamiltonian (H = -2JS(1)S(2)) and the Van Vleck equation. The obtained fit parameters were (in the format J/g) -45.0(4) cm(-)(1)/2.00(2), -36.6(4) cm(-)(1)/1.97(1), and -39.3(4) cm(-)(1)/1.92(1), respectively, where J is the exchange interaction parameter between the two Mn(IV) ions. Thus, all three complexes are antiferromagnetically coupled.  相似文献   

18.
An experimental gas-phase study of the intensities and fragmentation patterns of [Mn.(H(2)O)(n)](2+) and [Mn.(ROH)(n)](2+) complexes shows the combinations [Mn.(H(2)O)(4)](2+) and [Mn.(ROH)(4)](2+) to be stable. Evidence in complexes involving the alcohols methanol, ethanol, 1-propanol, and 2-propanol favors preferential fragmentation to [Mn.(ROH)(4)](2+), whereas the fragmentation data for water is less clear. Supporting density functional calculations show that both [Mn.(H(2)O)(4)](2+) and [Mn.(MeOH)(4)](2+) adopt stable tetrahedral configurations, similar to those proposed for biochemical systems where solvent availability and coordination is restricted. Calculated incremental binding energies show a gradual decline on going from one to six solvent molecules, with a step occurring between four and five molecules. The addition of further solvent molecules to the stable [Mn.(MeOH)(4)](2+) unit shows a preference for [Mn.(MeOH)(4)(MeOH)(1,2)](2+) structures, where the extra molecules occupy hydrogen-bonded sites in the form of a secondary solvation shell. Very similar behavior is seen on the part of water. As part of an analysis of the experimental data, the calculations have explored the influence different spins states of Mn(2+) have on solvent geometry. It is concluded that the experimental observations are best reproduced when the central Mn(2+) ion is in the high-spin (6)S ground state. The results are also considered in terms of the biochemical activity of Mn(2+) where the ion is capable of isomorphous substitution with Zn(2+), which itself exhibits a preference for tetrahedral coordination.  相似文献   

19.
The new, monometal substituted silicotungstates [Mn(H(2)O)(2)(gamma-SiW(10)O(35))(2)](10-) (1), [Co(H(2)O)(2)(gamma-SiW(10)O(35))(2)](10-) (2) and [Ni(H(2)O)(2)(gamma-SiW(10)O(35))(2)](10-) (3) have been synthesized and isolated as the potassium salts K(10)[Mn(H(2)O)(2)(gamma-SiW(10)O(35))(2)] x 8.25 H(2)O (K-1), K(10)[Co(H(2)O0(2)(gamma-SiW(10)O(35))(2)] x 8.25 H(2)O (K-2) and K(10)[Ni(H(2)O)(2)(gamma-SiW(10)O(35))(2)] x 13.5 H(2)O (K-3), which have been characterized by IR spectroscopy, single crystal X-ray diffraction, elemental analysis and cyclic voltammetry. Polyanions 1-3 are composed of two (gamma-SiW(10)O(36)) units fused on one side via two W-O-W' bridges and on the other side by an octahedrally coordinated trans-MO(4)(OH(2))(2) transition metal fragment, resulting in a structure with C(2v) point group symmetry. Anions 1-3 were synthesized by reaction of the dilacunary precursor [gamma-SiW(10)O(36)](8-) with Mn(2+), Co(2+) and Ni(2+) ions, respectively, in 1 M KCl solution at pH 4.5. The electrochemical properties of 1-3 were studied by cyclic voltammetry and controlled potential coulometry in a pH 5 buffer medium. The waves associated with the W-centers are compared with each other and with those of the parent lacunary precursor [gamma-SiW(10)O(36)](8-) in the same medium. They appear to be dominated by the acid-base properties of the intermediate reduced species. A facile merging of the waves for 3 is observed while those for 1 and 2 remain split. Controlled potential coulometry of the single wave of 3 or the combined waves of 1 and 2 is accompanied by catalysis of the hydrogen evolution reaction. No redox activity was detected for the Ni(2+) center in 3, whereas the Co(2+) center in 2 shows a one-electron redox process. The two-electron, chemically reversible process of the Mn(2+) center in 1 is accompanied by a film deposition on the electrode surface.  相似文献   

20.
Site-selective carboxylate abstraction has been achieved from [Mn(12)O(12)(O(2)CR)(16)(H(2)O)(4)] complexes by treatment with HNO(3) in MeCN. The reaction of the R = Ph or CH(2)Bu(t)() complexes with 4 equiv of HNO(3) gives [Mn(12)O(12)(NO(3))(4)(O(2)CR)(12)(H(2)O)(4)] (R = CH(2)Bu(t) (6) or Ph (7)) in analytical purity. Complex 6.MeNO(2) crystallizes in monoclinic space group C2/c with the following cell parameters at -168 degrees C: a = 21.280(5), b = 34.430(8), c = 33.023(8) A, beta = 104.61(1) degrees, V = 23413 A, and Z = 8. The four NO(3)(-) groups are not disordered and are bound in bridging modes at axial positions formerly occupied by bridging carboxylate groups. (1)H NMR spectroscopy in CD(2)Cl(2) and CDCl(3) shows retention of the solid-state structure on dissolution in these solvents. DC magnetic susceptibility (chi(M)) and magnetization (M) studies have been carried out in the 2.00-300 K and 1.0-7.0 T ranges. Fits of M/Nmu(B) versus H/T plots gave S = 10, g = 1.92, and D = -0.40 cm(-1), where D is the axial zero-field splitting parameter. AC magnetic susceptibility studies on 6 have been performed in the 1.70-10.0 K range in a 3.5 Oe field oscillating at frequencies up to 1500 Hz. Out-of-phase magnetic susceptibility (chi(M)' ') signals were observed in the 4.00-8.00 K range which were frequency-dependent. Thus, 6 displays the slow magnetization relaxation diagnostic of a single-molecule magnet (SMM). The data were fit to the Arrhenius law, and this gave the effective barrier to relaxation (U(eff)) of 50.0 cm(-1) (72.0 K) and a pre-exponential (1/tau(0)) of 1.9 x 10(8) s(-1). Complex 6 also shows hysteresis in magnetization versus DC field scans, and the hysteresis loops show steps at regular intervals of magnetic field, the diagnostic evidence of field-tuned quantum tunneling of magnetization. High-frequency EPR (HFEPR) spectroscopy on oriented crystals of complex 6 shows resonances assigned to transitions between zero-field split M(s) states of the S = 10 ground state. Fitting of the data gave S = 10, g = 1.99, D = -0.46 cm(-1), and B(4)(0) = -2.0 x 10(-5), where B(4)(0) is the quartic zero-field coefficient. The combined results demonstrate that replacement of four carboxylate groups with NO(3)(-) groups leads to insignificant perturbation of the magnetic properties of the Mn(12) complex. Complex 6 should now be a useful starting point for further reactivity studies, taking advantage of the good leaving group properties of the NO(3)(-) ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号