首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
层层组装微胶囊的制备及其智能响应与物质包埋释放性能   总被引:4,自引:1,他引:3  
在胶体微粒模板上进行聚合物间或聚合物和小分子间的交替层层(LBL)组装, 得到核壳微粒, 然后去除胶体微粒得到层层组装微胶囊. 综述了层层组装微胶囊在组装驱动力、智能响应性能和物质包埋与释放等方面的最新研究进展. 首先从组装驱动力和微胶囊结构调控出发, 简述了基于静电和氢键作用的LBL微胶囊的交联方法及交联所引起的微胶囊结构和性能的变化, 介绍了基于新驱动力如共价键作用、 碱基对作用和主客体作用制备LBL微胶囊的技术. 讨论了LBL微胶囊的智能响应性, 包括pH、 温度、 电荷、 光电磁和化学物质响应等. 详细介绍了LBL微胶囊包埋与释放功能物质尤其是药物、 蛋白和酶的方法及其特色, 包括LBL直接包埋与释放、 预吸附或共沉淀包埋与释放、 电荷选择性自沉积包埋与释放及爆释等. 最后, 着眼于微胶囊的靶向传递和功能器件, 介绍了采用静电作用和生物识别作用制备得到的微胶囊阵列.  相似文献   

2.
A strategy to incorporate and release anti-cancer drugs of daunorubicin (DNR) and doxorubicin (DOX) in preformed microcapsules is introduced, which is based on charge interaction mechanism. Oppositely charged poly(allylamine hydrochloride) (PAH) and poly(styrene sulfonate) (PSS) were assembled onto PSS doped-CaCO3 colloidal particles in a layer-by-layer manner to yield core-shell particles. After removal of the carbonate cores, hollow microcapsules with entrapped PSS were fabricated, which showed spontaneous loading ability of positively charged DNR and DOX. The drug loading was confirmed quantitatively by observations under confocal laser scanning microscopy, transmission electron microscopy and scanning force microscopy. Quantification of the drug loading was performed under different conditions, revealing that a larger amount of drugs could be incorporated at higher drug feeding concentrations and higher salt concentrations. However, putting additional polyelectrolyte layers on the microcapsules after core removal resulted in weaker drug loading efficiency. The drug release behaviors from the microcapsules with different layer numbers were studied too, revealing a diffusion controlled release mechanism at the initial stage (4 h).  相似文献   

3.
Poly(butylene succinate) (PBSu), poly(butylene succinate-co-adipate) (PBSA) and poly(butylene terephthalate-co-adipate) (PBTA) microcapsules were prepared by the double emulsion/solvent evaporation method. The effect of polymer and poly(vinyl alcohol) (PVA) concentration on the microcapsule morphologies, drug encapsulation efficiency (EE) and drug loading (DL) of bovine serum albumin (BSA) and all-trans retinoic acid (atRA) were all investigated. As a result, the sizes of PBSu, PBSA and PBTA microcapsules were increased significantly by varying polymer concentrations from 6 to 9%. atRA was encapsulated into the microcapsules with an high level of approximately 95% EE. The highest EE and DL of BSA were observed at 1% polymer concentration in values of 60 and 37%, respectively. 4% PVA was found as the optimum concentration and resulted in 75% EE and 14% DL of BSA. The BSA release from the capsules of PBSA was the longest, with 10% release in the first day and a steady release of 17% until the end of day 28. The release of atRA from PBSu microcapsules showed a zero-order profile for 2 weeks, keeping a steady release rate during 4 weeks with a 9% cumulative release. Similarly, the PBSA microcapsules showed a prolonged and a steady release of atRA during 6 weeks with 12% release. In the case of PBTA microcapsules, after a burst release of 10% in the first day, showed a parabolic release profile of atRA during 42 days, releasing 36% of atRA.  相似文献   

4.
The present work describes the formulation of alginate microspheres containing diltiazem hydrochloride by the emulsification-internal gelation method with the use of barium carbonate as a cross-linking agent. The effect of various factors (the concentration of alginate and barium chloride) on the drug loading efficiency and in vitro release were investigated. Fourier transform infrared microscopy (FTIR) and differential scanninig calorimetry (DSC) analysis confirmed the absence of any drug polymer interaction. X-ray diffraction (XRD) pattern showed that there is a decrease crystallinity of the drug. The in vitro drug release profile could be altered significantly by changing various processing parameters to give a controlled release of drug from microcapsules. The stability studies of drug-loaded microcapsules showed that the drug was stable at different storage conditions.  相似文献   

5.
Microwave-, photo- and thermo-responsive polymer microgels that range in size from 500 to 800 microm and are swollen with water were prepared by a novel microarray technique. We used a liquid-liquid dispersion technique in a system of three immiscible liquids to prepare hybrid PNIPAm- co-AM core-shell capsules loaded with AuNPs. The spontaneous encapsulation is a result of the formation of double oil-in-water-in-oil (o/w/o) emulsion. It is facilitated by adjusting the balance of the interfacial tensions between the aqueous phase (in which a water-soluble drug may be dissolved), the monomer phase and the continuous phase. The water-in-oil (w/o) droplets containing 26 wt% NIPAm and Am monomers, 0.1 wt% Tween-80 surfactant, FITC fluorescent dye and colloidal gold nanoparticles spontaneously developed a core-shell morphology that was fixed by in situ photopolymerization. The results demonstrate new reversibly swelling and deswelling AuNP/PNIPAm hybrid core-shell microcapsules and microgels that can be actuated by visible light and/or microwave radiation (相似文献   

6.
Responsive core-shell latex particles are used to prepare colloidosome microcapsules using thermal annealing and internal cross linking of the shell, allowing the production of the microcapsules at high concentrations. The core-shell particles are composed of a polystyrene core and a shell of poly[2-(dimethylamino)ethyl methacrylate]-b-poly[methyl methacrylate] (PDMA-b-PMMA) chains adsorbed onto the core surface, providing steric stabilization. The PDMA component of the adsorbed polymer shell confers thermally responsive and pH-responsive characteristics to the latex particle, and it also provides glass transitions at temperatures lower than those of the core and reactive amine groups. These features facilitate the formation of stable Pickering emulsion droplets and the immobilization of the latex particle monolayer on these droplets to form colloidosome microcapsules. The immobilization is achieved through thermal annealing or cross linking of the shell under mild conditions feasible for large-scale economic production. We demonstrate here that it is possible to anneal the particle monolayer on the emulsion drop surface at 75-86 °C by using the lower glass-transition temperature of the shell compared to that of the polystyrene cores (~108 °C). The colloidosome microcapsules that are formed have a rigid membrane basically composed of a densely packed monolayer of particles. Chemical cross linking has also been successfully achieved by confining a cross linker within the disperse droplet. This approach leads to the formation of single-layered stimulus-responsive soft colloidosome membranes and provides the advantage of working at very high emulsion concentrations because interdroplet cross linking is thus avoided. The porosity and mechanical strength of the microcapsules are also discussed here in terms of the observed structure of the latex particle monolayers forming the capsule membrane.  相似文献   

7.
The interaction of biocompatible, exponentially grown films composed of poly‐L ‐lysine (PLL) and hyaluronic acid (HA) polymers with gold nanoparticles and microcapsules is studied. Both aggregated and non‐aggregated nanoparticle states are achieved; desorption of PLL accounts for aggregation of nanoparticles. The presence of aggregates of gold nanoparticles on films enables remote activation by near‐infrared irradiation due to local, nanometer confined heating. Thermally shrunk microcapsules, which are remarkably monodisperse upon preparation but gain polydispersity after months of storage, are also adsorbed onto films. PLL polymers desorbed from films interact with microcapsules introducing a charge imbalance which leads to an increase of the microcapsule size, thus films amplify this effect. Multifunctional, biocompatible, thick gel films with remote activation and release capabilities are targeted for cell cultures in biology and tissue engineering in medicine.  相似文献   

8.
Spherical polymeric core-shell microcapsules in uniform size were produced by electrospraying with a coaxial nozzle setup. Contrary to the usual coaxial setup, the inner nozzle was slightly bent to touch the inside wall of the outer nozzle. A polymer solution for the core was introduced through the outer nozzle, and the other solution for the shell was supplied through the inner nozzle. The setup greatly increased reproduction of the same results. As a proof of the concept, core-shell microcapsules consisting of a PS or PMMA core and a PCL shell (PS@PCL, PMMA@PCL) were produced. When the volumetric feed rate of the shell-forming PCL solution was higher than that of the core-forming PS or PMMA solution the core-shell structures in uniform size were readily obtained. In contrast, irregular morphologies were observed when the feed rate of the PCL solution was slower or equal to that of the PS or PMMA solution. The size of the colloid was dependent on the relative feed ratio between the polymer solutions as well as the magnitude of applied voltage.  相似文献   

9.
We use single emulsions as templates to fabricate monodisperse biocompatible microcapsules with a water core. These microcapsules are fabricated using FDA-approved polymer and non-toxic solvents and are of great use in drugs, cosmetics and foods.  相似文献   

10.
Uniform-sized biodegradable PLA/PLGA microcapsules loading recombinant human insulin (rhI) were successfully prepared by combining a Shirasu Porous Glass (SPG) membrane emulsification technique and a double emulsion-evaporation method. An aqueous phase containing rhI was used as the inner water phase (w1), and PLA/PLGA and Arlacel 83 were dissolved in a mixture solvent of dichloromethane (DCM) and toluene, which was used as the oil phase (o). These two solutions were emulsified by a homogenizer to form a w1/o primary emulsion. The primary emulsion was permeated through the uniform pores of a SPG membrane into an outer water phase by the pressure of nitrogen gas to form the uniform w1/o/w2 droplets. The solid polymer microcapsules were obtained by simply evaporating solvent from droplets. Various factors of the preparation process influencing the drug encapsulation efficiency and the drug cumulative release were investigated systemically. The results indicated that the drug encapsulation efficiency and the cumulative release were affected by the PLA/PLGA ratio, NaCl concentration in outer water phase, the inner water phase volume, rhI-loading amount, pH-value in outer water phase and the size of microcapsules. By optimizing the preparation process, the drug encapsulation efficiency was high up to 91.82%. The unique advantage of preparing drug-loaded microcapsules by membrane emulsification technique is that the size of microcapsules can be controlled accurately, and thus the drug cumulative release profile can be adjusted just by changing the size of microcapsules. Moreover, much higher encapsulation efficiency can be obtained when compared with the conventional mechanical stirring method.  相似文献   

11.
In this study, thermotropic liquid-crystal/polymer microcapsules were produced via in situ suspension polymerization. The phase separation between cholesteryl liquid crystal (CLC) and poly(methyl methacrylate) (PMMA) in the droplets was induced by polymerization, resulting consequently in uniform liquid-crystal-containing polymer microcapsules. The phase behavior of the microcapsules was dependent on the loading amount of the liquid crystals and the degree of cross-linking of the polymer phase. Above 30% loading amount of CLC, the liquid crystals started to appear clearly. It was found that the spherical morphology of the microcapsules was achieved within a slight degree of cross-linking of the PMMA phase. At a high degree of cross-linking, nonspherical particles with a rough surface and deeper dents were obtained, which was due to the elastic-retractive force of the cross-linked network. The liquid-crystal/polymer microcapsules produced in this study could find great applicability in pharmaceutics and electronics as a smart drug carrier.  相似文献   

12.
Addition of polyethylene glycol to aqueous assembly solutions of oppositely charged polypeptides enables high-capacity "loading" of functional protein in biocompatible microcapsules by template-supported layer-by-layer nanoassembly.  相似文献   

13.
在甲基丙烯酸和乳酸接枝修饰的水溶性壳聚糖(CML)存在下, 合成了尺寸均匀的球形CML杂化碳酸钙微粒. 通过层层组装(LBL)技术在该微粒表面形成了聚苯乙烯磺酸钠(PSS)/聚烯丙基胺盐酸盐(PAH)多层膜, 去除碳酸钙微粒后得到内部含有CML的聚电解质微胶囊. 进一步采用紫外光引发CML聚合, 将CML转化为CML微凝胶, 得到内部填充凝胶的微胶囊. 通过扫描电镜、光学显微镜和透射电镜等技术表征了微胶囊的结构. 与传统的LBL微胶囊不同, 凝胶填充的微胶囊干燥时尺寸收缩, 但仍可保持球形; 再次水化后, 能够膨胀恢复其原有尺寸和形态. 各种具有不同电荷性质、分子量和亲疏水性的染料分子及蛋白质均可有效地装载到微胶囊内.  相似文献   

14.
复凝聚法制备昆虫激素模拟物十二醇微胶囊及其释放性能   总被引:1,自引:0,他引:1  
以明胶(GE)和阿拉伯胶(AG)为壁材, 通过复凝聚法将昆虫激素模拟物十二醇(C12OH)包覆在微胶囊中, 改变微胶囊壁材的浓度和交联度, 探讨了体系中C12OH的可控释放性能. 通过对壁材质量比为1及不同pH条件下的壁材凝聚率测试确定最佳复凝聚的pH为4.0; 考察了不同分散剂对微胶囊及其分散液性能的影响, 确定以Tween 20/Span 80(质量比1∶1)作为复凝聚法包覆C12OH体系的分散剂. 在壁材质量分数大于或等于3%条件下制备的微胶囊粒径大于壁材质量分数为2%的微胶囊, 胶囊的载药量和C12OH包覆率明显高于后者. 增加交联剂的用量, 壁材交联度、胶囊的载药量和C12OH包覆率都显著提高. 在相同用量的情况下, 用甲醛作交联剂时得到的微胶囊的交联度比用戊二醛作交联剂时的要低, 但其对C12OH的包覆率更高. 通过扫描电镜对微胶囊进行了分析, 认为GE与AG通过复凝聚能够将C12OH包覆在微胶囊内部. 对胶囊中C12OH在恒温恒湿条件下的释放研究结果表明, 3%与4%壁材含量下1%戊二醛交联的微胶囊和5%壁材含量下4%戊二醛交联的微胶囊中C12OH的释放行为有明显的可控性. 通过调节微胶囊的壁材含量和交联度可以达到昆虫激素可控释放的目的.  相似文献   

15.
In this article, the development of a novel technique to fabricate spherical polymeric microcapsules by utilizing microfluidic technology is presented. Atom transfer radical polymerization (ATRP) was employed to synthesize well-defined amphiphilic block copolymers. An organic polymer solution was constrained to adopt the spherical droplets in a continuous water phase at a T-junction microchannel, and the generation of the droplets was studied quantitatively. The flow conditions of two immiscible solutions were adjusted for the successful generation of the polymer droplets. The morphology of the microcapsules was examined. The efficiency of these polymer microcapsules as containers for the storage and controlled release of loaded molecules was evaluated by encapsulating the microcapsules with Congo-red dye and investigating the release performance using temperature controlled UV-VIS spectroscopy.  相似文献   

16.
The overall goal of this study was to fabricate multifunctional core-shell microcapsules with biological cells encapsulated within the polymer shell. Biocompatible temperature responsive microcapsules comprised of silicone oil droplets (multicores) and yeast cells embedded in a polymer matrix (shell) were prepared using a novel microarray approach. The cross-linked polymer shell and silicone multicores were formed in situ via photopolymerization of either poly(N-isopropylacryamide)(PNIPAm) or PNIPAm, copolymerized with poly(ethylene glycol monomethyl ether monomethacrylate) (PEGMa) within the droplets of an oil-in-water-in-oil double emulsion. An optimized recipe yielded a multicore-shell morphology, which was characterized by optical and laser scanning confocal microscopy (LSCM) and theoretically confirmed by spreading coefficient calculations. Spreading coefficients were calculated from interfacial tension and contact angle measurements as well as from the determination of the Hamaker constants and the pair potential energies. The effects of the presence of PEGMa, its molecular weight (M(n) 300 and 1100 g/mol), and concentration (10, 20, and 30 wt %) were also investigated, and they were found not to significantly alter the morphology of the microcapsules. They were found, however, to significantly improve the viability of the yeast cells, which were encapsulated within PNIPAm-based microcapsules by direct incorporation into the monomer solutions, prior to polymerization. Under LSCM, the fluorescence staining for live and dead cells showed a 30% viability of yeast cells entrapped within the PNIPAm matrix after 45 min of photopolymerization, but an improvement to 60% viability in the presence of PEGMa. The thermoresponsive behavior of the microcapsules allows the silicone oil cores to be irreversibly ejected, and so the role of the silicone oil is 2-fold. It facilitates multifunctionality in the microcapsule by first being used as a template to obtain the desired core-shell morphology, and second it can act as an encapsulant for oil-soluble drugs. It was shown that the encapsulated oil droplets were expelled above the volume phase transition temperature of the polymer, while the collapsed microcapsule remained intact. When these microcapsules were reswollen with an aqueous solution, it was observed that the hollow compartments refilled. In principle, these hollow-core microcapsules could then be filled with water-soluble drugs that could be delivered in vivo in response to temperature.  相似文献   

17.
The functionality of a new class of monolithic systems for the controlled release of drugs is discussed. The systems consist of uniformly dispersed particles of osmotically active therapeutic agents (drugs) in biocompatible polymeric matrices. The drug particles are encapsulated by polymers to form a multiplicity of microcapsules throughout the matrix. These osmotic film systems display zero-order drug delivery kinetics. The principal energy source governing the release of agents is osmotic in nature. When such a film is placed in an aqueous infinite sink, the film imbibes water into the outermost layer of the dispersion at a rate dictated by permeability of the polymer. Water transport into the film continues until volumetric rupture of the drug-containing capsules occurs, after which time saturated drug solution is pumped through channels created by the rupture. This process repeats itself in a serial fashion until the system is exhausted of agent. Due to the osmotic functionality of these systems, reduction of the thermodynamic activity of water outside the system can proportionally reduce the release of agent. In this paper the effects of varying drug particle size, osmotic pressure gradients, system area, drug type, polymer type, and temperature upon the drug release kinetics are presented. Application of this new technology has allowed the fabrication of several useful drug therapeutic systems.  相似文献   

18.
以二甲基硅油(PDMS)作为连续相,用搅拌制乳——溶剂挥发的方法制备了聚丙烯腈(PAN)、醋酸纤维素(CA)、壳聚糖(CTS)等几种聚合物包覆Aliquat336(ALQ)、四甘醇(TEG)和牛血清白蛋白(BSA)等分离剂的微胶囊.其中挥发溶剂是N,N-二甲基甲酰胺(DMF),乙酸(AA)和水等极性溶剂.整个制备过程不需要添加任何其他表面活性剂,就可以得到分散性和球形度都很好的微胶囊,相比一般的溶剂挥发过程影响因素少,易于调控.制备得到的微胶囊表面致密,平均粒径在10~100μm之间.通过增加连续相粘度和降低聚合物溶液浓度的方法都可以使微胶囊粒径更小.在PDMS中添加一定量待包覆的萃取剂就可以实现对微胶囊包覆率的调控,实验中ALQ/PAN,TEG/CA和BSA/CTS微胶囊的包覆率分别可以达到0·43,0·38和0·08g/g.  相似文献   

19.
Novel monodisperse cationic pH-responsive microcapsules are successfully prepared using oil-in-water-in-oil double emulsions as templates by a microfluidic technique in this study. With the use of a double photo-initiation system and the adjustment of pH value of the monomer solution, cross-linked poly(N,N-dimethylaminoethyl methacrylate) (PDM) microcapsules with good sphericity and monodispersity can be effectively fabricated. The obtained microcapsule membranes swell at low pH due to the protonation of N(CH(3))(2) groups in the cross-linked PDM networks. The effects of various preparation parameters, such as pH of the aqueous monomer fluid, concentration of cross-linker, concentration of monomer N,N-dimethylaminoethyl methacrylate (DM) and addition of copolymeric monomer acrylamide (AAm), on the pH-responsive swelling characteristics of PDM microcapsules are systematically studied. The results show that, when the PDM microcapsules are prepared at high pH and with low cross-linking density and low DM monomer concentration, they exhibit high pH-responsive swelling ratios. The addition of AAm in the preparation decreases the swelling ratios of PDM microcapsules. The external temperature has hardly any influence on the swelling ratios of PDM microcapsules when the external pH is less than 7.4. The prepared PDM microcapsules with both biocompatibility and cationic pH-responsive properties are of great potential as drug delivery carriers for tumor therapy. Moreover, the fabrication methodology and results in this study provide valuable guidance for preparation of core-shell microcapsules via free radical polymerization based on synergistic effects of interfacial initiation and initiation in a confined space.  相似文献   

20.
以三聚氰胺甲醛(MF)微粒为模板,采用逐层静电自组装技术交替吸附聚苯乙烯磺酸钠(PSS)和聚烯丙基胺盐酸盐(PAH),得到具有核壳结构的复合式微球,然后通过pH=1的盐酸溶液除去中心模板,得到直径约为3~4μm的空腔胶囊.使用藻红蛋白作为探针分子,通过比较空腔胶囊装载前后荧光强度的变化,发现pH在4~5之间时,胶囊呈现最大的蛋白装载量.pH在6~10的范围内,藻红蛋白在胶囊上的装载量几乎不变.pH3时,装载能力很差.此外,通过荧光共聚焦显微镜对不同pH条件下的蛋白装载规律进行了成像分析.一部分藻红蛋白在pH=4的条件下通过扩散进入了胶囊的内部,而pH=7的条件下,藻红蛋白不进入胶囊内部,而是吸附在表面.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号