首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isolation and characterization of poly(butylene succinate)-degrading fungi   总被引:3,自引:0,他引:3  
We isolated 12 poly(butylene succinate) (PBSu)-degrading fungi from various soil environments. Among the isolates, the NKCM1706 strain exhibited the fastest degradation rate for the PBSu film (10.5 μg cm−2 h−1). Phylogenetic analysis revealed that this strain is closely related to Aspergillus fumigatus (internal transcribed spacer (ITS) identity, 100%). Further, this strain exhibited PBSu-hydrolytic activity in the presence of poly(?-caprolactone) (PCL), PBSu, and poly(butylene succinate-co-adipate) (PBSA). On adding this strain into the soil sample, the PBSu degradation rate accelerated approximately sixfold, suggesting that this strain plays a crucial role in PBSu degradation in actual soil environments. In addition to PBSu, the NKCM1706 strain could degrade PBSA, poly(ethylene succinate) (PESu), poly(3-hydroxybutyrate) (P(3HB)), and PCL.  相似文献   

2.
Two aliphatic polyesters that consisted from succinic acid, ethylene glycol and butylene glycol, —poly(ethylene succinate) (PESu) and poly(butylene succinate) (PBSu)—, were prepared by melt polycondensation process in a glass batch reactor. These polyesters were characterized by DSC, 1H NMR and molecular weight distribution. Their number average molecular weight is almost identical in both polyesters, close to 7000 g/mol, as well as their carboxyl end groups (80 eq/106 g). From TG and Differential TG (DTG) thermograms it was found that the decomposition step appears at a temperature 399 °C for PBSu and 413 °C for PESu. This is an indication that PESu is more stable than PBSu and that chemical structure plays an important role in the thermal decomposition process. In both polyesters degradation takes place in two stages, the first that corresponds to a very small mass loss, and the second at elevated temperatures being the main degradation stage. The two stages are attributed to different decomposition mechanisms as is verified from the values of activation energy determined with iso-conversional methods of Ozawa, Flyn, Wall and Friedman. The first mechanism that takes place at low temperatures, is auto-catalysis with activation energy E = 128 and E = 182 kJ/mol and reaction order n = 0.75 and 1.84 for PBSu and PESu, respectively. The second mechanism is nth-order reaction with E = 189 and 256 kJ/mol and reaction order n = 0.68 and 0.96 for PBSu and PESu, respectively, as they were calculated from the fitting of experimental results.  相似文献   

3.
Poly(L ‐lactide) (PLLA)/poly(butylene succinate‐co‐butylene adipate) (PBSA) blends were compounded with Cloisite 25A® (C25A) and C25A functionalized with epoxy groups, respectively. Epoxy groups on the surface of C25A were introduced by treating C25A with (glycidoxypropyl)trimethoxy silane (GPS) to produce so called Twice Functionalized Organoclay (TFC). Variation of morphology and properties of PLLA/PBSA/C25A composites was investigated before and after the treatment with GPS. The morphological structure of the composites was analyzed by using X‐ray diffractometry (XRD) and transmission electron microscopy (TEM). The silicate layers of PLLA/PBSA/TFC were exfoliated to a larger extent than PLLA/PBSA/C25A. Incorporation of the epoxy groups on C25A improved significantly elongation at break as well as tensile modulus and tensile strength of PLLA/PBSA/C25A. The larger amount of exfoliation of the silicate layers in PLLA/PBSA/TFC as compared with that in PLLA/PBSA/C25A was attributed to the increased interfacial interaction between the polyesters and the clay due to chemical reaction. Thermo gravimetric analysis revealed that both T5%, which was the temperature corresponding to 5% weight loss, and activation energy of thermal decomposition of PLLA/PBSA/TFC were far superior to those of PLLA/PBSA/C25A as well as to those of PLLA/PBSA, indicating that the composites with exfoliated silicate layers were more thermally stable than those with intercalated silicate layers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 478–487, 2005  相似文献   

4.
The biodegradable poly(butylene succinate)/poly(epsilon-caprolactone) (PBS/PCL) microcapsules containing indomethacin were prepared by emulsion solvent evaporation method. The morphologies, thermal properties, and release behaviors of PBS/PCL microcapsules were investigated. As a result, the microcapsules exhibited porous and spherical form in the presence of gelatin as a surfactant. From the DSC result, the PBS/PCL microcapsules showed the two exothermic peaks meaning the melting points of PCL and PBS. The results of FT-IR and DSC proved that the PBS and PCL were mixed so that the PBS/PCL microcapsules were composed of two wall-forming materials. And the release rate of indomethacin from the microcapsules was decreased with increasing the PCL content. It was noted that an addition of PCL on the PBS led to the decrease of pore size in the PBS/PCL microcapsules.  相似文献   

5.
Poly(butylene terephthalate)/poly(butylene terephthalate-e-caprolactone) is a new A/AxB1-x binary crystalline blend with intra-molecular repulsion interaction. Using the mean-field binary interaction model, the value of interaction parameter between the butylene terephthalate and caprolactone structural unit was first reported to be 0.305. This blend exhibited different crystallization behavior from a typical homopolymer/copolymer blend, which was carefully investigated by di?erential scanning calorimetry. It was found that poly(butylene terephthalate-e-caprolactone) copolymers have a great effect on the pure poly(butylene terephthalate) chain mobility and poly(butylene terephthalate) crystalline lattice packing. In the meantime, the crystallization of butylene terephthalate segments in copolymers was restricted by the previously formed poly(butylene terephthalate) crystallites. The two constituents for blending can not form a co-crystal in the range of composition even if they have the same butylene terephthalate unit. It can be concluded that longersegments in a copolymer would be beneficial for the formation of a co-crystal in blends.  相似文献   

6.
Biodegradable poly(butylene succinate-co-adipate) (PBSA)-based nanocomposites were successfully prepared. A commercial halloysite nanotube (HNT) and an organo-montmorillonite (denoted as 15A) served as reinforcing fillers. Scanning electron microscopy and transmission electron microscopy results confirmed the nano-scale dispersion of HNT and 15A in the composites. Differential scanning calorimetry results showed that 15A served as nucleating agent for PBSA crystallization, but HNT hardly affected the nucleation of PBSA. Both nanofillers assisted the isothermal crystallization of PBSA, with 15A demonstrating superior efficiency. Melting behavior study suggests that the presence of HNT or 15A hampered the melting-recrystallization process of the originally less stable crystals during heating scans. Thermogravimetric analyses revealed that 15A enhanced the thermal stability of PBSA in air environment, but HNT caused a decline at high loadings. The rigidity of PBSA, including Young’s/flexural moduli, evidently increased after the addition of HNT or 15A, with 15A showing higher enhancing efficiency than HNT at similar loadings. The flexural modulus increased up to 94% with 20 wt% in HNT and up to 48% with 5 wt% 15A loading. The rheological property measurements confirmed the achievement of pseudo-network structure at 5 wt% 15A loading, whereas the HNT-included system did not develop a network structure.  相似文献   

7.
Poly(butylene oxalate) (PBO) and poly(butylene oxalate/butylene azelate) random copolymers (PBOBAz) of various compositions were synthesized in bulk and characterized in terms of chemical structure and thermal properties. The thermal behavior was examined by thermogravimetric analysis and differential scanning calorimetry. All copolymers were found to be partially crystalline and thermally stable up to about 290 °C. The main effect of copolymerization was a decrease in melting and glass transition temperatures with respect to PBO homopolymer. The pure crystalline phase characteristic of PBO was evidenced by means of X-ray measurements in all the copolymers under investigation. The fusion temperatures appeared to be well correlated to composition by Baur's equation.Amorphous samples were obtained after melt quenching and showed a monotonic decrease of glass transition temperatures as the content of the flexible butylene azelate units is increased. Fox equation described well the Tg-composition data. Lastly, the overall crystallization rate of PBO was found to decrease regularly with increasing butylene azelate unit content.  相似文献   

8.
Fully biodegradable poly(butylene succinate) (PBS) and poly(butylene carbonate) (PBC) blends were prepared by melt blending. Miscibility, thermal properties, crystallization behavior and mechanical properties of PBS/PBC blends were investigated by scanning electron microscopy (SEM), phase contrast optical microscopy (PCOM), differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and mechanical properties tests. The SEM and PCOM results indicated that PBS was immiscible with PBC. The WAXD results showed that the crystal structures of both PBS and PBC were not changed by blending and the two components crystallized separately in the blends. The isothermal crystallization data showed that the crystallization rate of PBS increased with the increase of PBC content in the blends. The impact strength of PBS was improved significantly by blending with PBC. When the PBC content was 40%, the impact strength of PBS was increased by nearly 9 times.  相似文献   

9.
Binary blends of poly(l-lactide) (PLLA) and poly(butylene terephthalate) (PBT) containing PLLA as major component were prepared by melt mixing. The two polymers are immiscible, but display compatibility, probably due to the establishment of interactions between the functional groups of the two polyesters upon melt mixing. Electron microscopy analysis revealed that in the blends containing up to 20% of poly(butylene terephthalate), PBT particles are finely dispersed within the PLLA matrix, with a good adhesion between the phases. The PLLA/PBT 60/40 blend presents a co-continuous multi-level morphology, where PLLA domains, containing dispersed PBT units, are embedded in a PBT matrix. The varied morphology affects the mechanical properties of the material, as the 60/40 blend displays a largely enhanced resistance to elongation, compared to the blends with lower PBT content.  相似文献   

10.
The poly (butylene succinate‐co‐butylene adipate) (PBSA)/thiodiphenol (TDP) complexes were prepared by melt blending. Intermolecular hydrogen bonding between carbonyl group of PBSA and hydroxyl group of TDP formed as verified by a combination FTIR and peak fitting technique. As a result, the crystallization temperature, melting temperature, crystallinity and crystallization rate of PBSA decreased with addition of TDP, implying impeded crystallization and reduced lamellar thickness. On the basis of Lauritzen–Hoffman analysis, the fold surface energy (σe) and work of chain folding (q) were increased by TDP incorporation. POM observation exhibited concentric ring‐banded spherulites for samples with 10 and 20 wt% TDP. A peculiar ring‐banded pattern with discrepant band spacing was obtained for the first time by addition of 30 wt% TDP, whose formation mechanism remains to be discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
The influence of the degree of intercalation of polymer chains in the two dimensional silicate galleries on the crystallization behavior of poly[(butylene succinate)-co-adipate] (PBSA) is being reported on. The nanocomposites were prepared by melt-blending of PBSA and organically modified montmorillonite (OMMT) in a batch-mixer. Two different types of commercially available OMMTs, with different extents of miscibility of organic modifiers with PBSA, were used, leading to highly delaminated and stacked/intercalated nanocomposite structures as revealed by X-ray diffraction (XRD) patterns and transmission electron microscopy (TEM) observations. The non-isothermal crystallization behavior of PBSA and the nanocomposite samples were studied by differential scanning calorimetry (DSC). Crystal growth kinetics studies showed that when silicate layers are highly delaminated into the PBSA matrix, nucleation behaviors decreased significantly, relative to the stacked/intercalated silicate layers. These observations indicate that the overall crystal growth kinetics retard in delaminated nanocomposites, opposed to increasing in the case of stacked/intercalated nanocomposites. Polarized optical microscopy (POM) observations and light scattering studies indicate that PBSA spherulites are fairly large and more perfectly grown in the case of delaminated nanocomposites, relative to the pure PBSA matrix. The effect of high levels of dispersion of silicate layers in the PBSA matrix on cold crystallization behavior was also studied.  相似文献   

12.
王学川  晏超 《高分子科学》2014,32(4):488-496
The effects of crystallization temperature and blend ratio on the polymorphic crystal structures of poly(butylene adipate)(PBA) in poly(butylene succinate)(PBS)/poly(butylene adipate)(PBS/PBA) blends were studied by means of differential scanning calorimetry(DSC), wide-angle X-ray diffraction(XRD) and atomic force microscopy(AFM). It was revealed that the polymorphism of PBA can be regulated by the blend ratio even in a non-isothermal crystallization process. The results demonstrate that high temperature favors flat-on α crystals, while low temperature contributes to edge-on β crystals. It was also found that the effect of blend ratio on the crystallization mechanism of PBA is well coincident with that of the crystallization temperature. The increment of PBS content in the PBS/PBA blend gives rise to more β-form crystals of PBA. For those PBS/PBA blends with low PBA content, the interlamellar phase segregation of PBA makes its molecular chains so difficult to diffuse from one isolated microdomain to another that high crystallization temperature and sufficiently long crystallization time will be required if the PBA α-type crystals are targeted.  相似文献   

13.
In this article the thermal and thermomechanical properties of neat poly[(butylene succinate)-co-adipate] (PBSA) and its nanocomposite are reported. Nanocomposite of PBSA with organically modified synthetic fluorine mica (OSFM) has been prepared by melt-mixing in a batch mixer. The structure of nanocomposite is characterized by X-ray diffraction patterns and transmission electron microscopic (TEM) observations that reveal homogeneous dispersion of intercalated silicate layers in the PBSA matrix. The melting behavior of pure polymer and nanocomposite samples are analyzed by differential scanning calorimetry (DSC), which shows multiple melting behavior of the PBSA matrix. The multiple melting behavior of the PBSA matrix is also studied by temperature modulated DSC (TMDSC) and wide-angle XRD (WXRD) measurements. All results show that the multiple melting behavior of PBSA is due to the partial melting, re-crystallization, and re-melting phenomena. The investigation of the thermomechanical behavior is performed by dynamic mechanical thermal analysis. Results demonstrate substantial enhancement in the mechanical properties of PBS, for example, at room temperature, storage flexural modulus increased from 0.5 GPa for pure PBS to 1.2 GPa for the nanocomposite, an increase of about 120% in the value of the elastic modulus. The thermal stability of nanocomposite compared to that of neat PBSA is also examined in pyrolytic and thermo-oxidative conditions. It is then studied using kinetic analysis. It is shown that the stability of PBSA is increased moderately in the presence of OSFM.  相似文献   

14.
A series of poly[p-dioxanone-(butylene succinate)] (PPDOBS) copolymers were prepared from p-dioxanone (PDO), 1,4-butanediol and succinate acids through a two-step process including the initial prepolymer preparation of poly(p-dioxanone)diol (PPDO-OH) and poly(butylene succinate)diol (PBS-OH) and the following copolymerization of the two kinds of prepolymers by coupling with hexamethylene diisocyanate (HDI). The molecular structures of the prepared PPDO-OH, PBS-OH and PPDOBS were characterized by hydrogen nuclear magnetic resonance spectroscopy (1H NMR). The crystallization of the copolymers was investigated by using differential scanning calorimetry (DSC), polarized optical microscopy (POM) and wide angle X-ray diffraction (WAXD). It has been shown that the crystallization rate and the degree of crystallization increases with the increase of the weight fraction of poly(butylene succinate) (PBS) blocks in the copolymers. In phosphate buffer solution with pH 7.4 at 37 °C for 18 weeks, the hydrolytic degradation behaviors of the copolymers were studied. The changes of retention weight, water absorption, pH value, and surface morphologies with the degradation time showed that the hydrolytic degradation rate of PPDOBS could be controlled by adjusting the weight fraction of poly(p-dioxanone) (PPDO) and PBS blocks in the copolymers. The changes of the thermal properties of PPDOBS during the degradation were also investigated by DSC.  相似文献   

15.
Compared with poly(butylene terephthalate) (PBT), glass-fibre-reinforced poly(butylene terephthalate) (GF-PBT) is difficult to flame retard with halogen-free flame retardants. In the present study, the aluminium salt of hypophosphorous acid (AP) was used as a flame retardant for GF-PBT. A series of flame-retardant GF-PBT composites was prepared via melt compounding. The flame retardance and combustion behaviour of the composites were studied by limiting oxygen index (LOI), vertical burning test (UL-94) and cone calorimetric test. Thermal behaviours and thermal decomposition kinetics were investigated by thermogravimetric analysis (TGA) under N2 atmosphere. The addition of AP to the composites could result in an increased LOI value, a UL-94 V-0 (1.6 mm) classification and a better fire performance in cone calorimetric tests. The char morphology observation after flame-retardant tests, calculation of decomposition kinetics, X-ray photoelectron spectroscopy (XPS) and infra-red spectral analysis of the char residue confirmed the condensed-phase flame-retardant mechanism. Furthermore, the mechanical properties of the flame-retardant composites were not deteriorated, retaining an acceptable level.  相似文献   

16.
Telechelic ionomeric poly(butylene terephthalate) nanocomposites with organically modified clays have been prepared by the melt intercalation technique both in Brabender mixer and in twin screw-extruder. The presence of ionic groups tethered at the end of the polymer chains permits electrostatic interaction between the polymer and the surface of an organically modified clays providing a thermodynamic driving force for the dispersion of the clay platelets in the polymer matrix. The improved dispersion has been verified by TEM and XRD analyses. Nanocomposites with telechelic polymers present therefore consistently higher thermo-mechanical properties and improved thermal and hydrolytic stability respect to nanocomposites with standard PBT. Nanocomposite obtained using PBT with 3% telechelic ionic groups and with 5% of clay present a heat deflection temperature that is 48 °C higher compared to that of the commercial material. The presence of the clay also slightly increases the thermal and hydrolytic stability respect to standard PBT.  相似文献   

17.
18.
张会良 《高分子科学》2015,33(3):444-455
Poly(propylene carbonate)(PPC) was melt blended in a batch mixer with poly(butylene carbonate)(PBC) in an effort to improve the toughness of the PPC without compromising its biodegradability and biocompatibility. DMA results showed that the PPC/PBC blends were an immiscible two-phase system. With the increase in PBC content, the PPC/PBC blends showed decreased tensile strength, however, the elongation at break was increased to 230% for the 50/50 PPC/PBC blend. From the tensile strength experiments, the Pukanszky model gave credit to the modest interfacial adhesion between PPC and PBC, although PPC/PBC was immscible. The impact strength increased significantly which indicated the toughening effects of the PBC on PPC. SEM examination showed that cavitation and shear yielding were the major toughening mechanisms in the blends subjected the impact tests. TGA measurements showed that the thermal stability of PPC decreased with the incorporation of PBC. Rheological investigation demonstrated that the addition of PBC reduced the value of storage modulus, loss modulus and complex viscosity of the PPC/PBC blends to some extent. Moreover, the addition of PBC was found to increase the processability of PPC in extrusion. The introduction of PBC provided an efficient and novel toughened method to extend the application area of PPC.  相似文献   

19.
A series of poly(butylene succinate)/silica (PBS/silica) nanocomposites were prepared by in situ polymerization. Solid-state 29Si NMR and FTIR analysis indicated that silanol-bonded carbonyl groups are established within PBS/silica nanocomposite materials. Rheological effects inherent to the silica filler were evaluated by melt rheological analysis as a function of shear force in the molten state. Despite high shear force, PBS/silica nanocomposites maintained a relatively high melt viscosity, attributable to a network structure resulting from covalent bonding between silica and the polymer chain. Nanocomposite material containing 3.5 wt% silica exhibited greatly improved mechanical properties. The tensile strength at break and elongation were ca. 38.6 MPa and 515%, while those of the parent PBS were 26.3 MPa and 96%, respectively. PBS/silica nanocomposites showed composition dependency on biodegradation ascribable to reduced crystallinity and preferential microbial attack.  相似文献   

20.
制备了高分子量的聚丁二酸丁二醇酯,并通过与对苯二甲酸二甲酯的无规共聚调节其生物可降解性及力学性能,得到了具有优良机械性能和不同生物降解速度的一系列共聚物,并对共聚物序列结构、热力学性能、结晶性进行了研究.结果表明,该共聚物为无规共聚物,PBS和PBT分别结晶.共聚物的结晶熔点符合无规共聚物的Flory方程.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号