首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MCM-22和ITQ-2分子筛负载型催化剂加氢裂化性能的对比研究   总被引:5,自引:0,他引:5  
 以MCM-22和ITQ-2分子筛为载体, WNi为活性组分,制得两种负载型催化剂,考察了两种催化剂的加氢裂化性能,并通过N2吸附、氨程序升温脱附和原位红外光谱对催化剂进行了表征. 减压瓦斯油加氢裂化反应结果表明, WNi/ITQ-2的加氢裂化活性高于WNi/MCM-22, 并且前者的反应温度相对较低. WNi/ITQ-2具有高催化活性是因为ITQ-2分子筛具有空旷的次级结构和较多的可接近的酸性位; 中油选择性高是因为空旷的次级结构使裂化产物快速离开酸性位而避免了二次裂化.  相似文献   

2.
考察了膨胀剂的用量、合成体系的pH值和MCM-22(P)的硅/铝比对合成ITQ-2分子筛的影响. 结果表明,同时降低膨胀剂十六烷基三甲基溴化铵和四丙基氢氧化铵的用量,在pH=11.5时 4 h 即可完成对MCM-22(P)的插层膨胀;pH值降低时,可减小由于脱硅对ITQ-2分子筛硅/铝比下降的影响,并且使产物收率大幅度提高. 同时, pH值降低使后续的超声剥离更加容易,且可避免生成MCM-41介孔分子筛杂相. MCM-22(P)的硅/铝比越大,层表面的电荷密度越低,带负电荷的层板和阳离子插层剂之间的静电引力和分子间作用力也就越小,致使插层膨胀和随后的超声剥离越容易.  相似文献   

3.
以离子液体为模板剂, 正硅酸乙酯为硅源, 研究了扩孔剂三甲苯, 癸烷, 以及三甲苯与癸烷1∶1的混合物对介孔分子筛MCM-41结构的影响, 采用XRD以及氮吸附-脱附分析技术对合成的介孔分子筛MCM-41进行了表征.结果表明: 三种扩孔剂中以三甲苯与癸烷1∶1的混合物效果最优, MCM-41的孔径可达到4.5 nm, 并且可以提高介孔分子筛的比表面积与结晶度.扩孔剂的最佳添加量为: 扩孔剂与模板剂之比等于1.0;最佳晶化温度120 ℃.  相似文献   

4.
以硅酸钠为原料,CTAB为模板剂,水热法合成MCM-41介孔分子筛,采用浸渍法制备负载钴的介孔分子筛(Co/MCM-41),并将其作为催化剂,CVD法热解无水乙醇制备CNTs.利用XRD、TEM、比表面积和孔径分布测定和Raman光谱等方法对所合成的介孔分子筛和纳米碳管进行了表征.结果表明:所制备的Co/MCM-41样品具有典型的MCM-41的介孔结构;当热解反应温度为750℃下所制备出的纳米碳管的品质最好.  相似文献   

5.
分别采用四丙基氢氧化铵(TPAOH),十六烷基三甲基溴化铵(CTAB)和N-十八烷基-N'-己基-四甲基-1, 6-己二铵(C18-6-6Br2)作为模板剂,合成了具有不同介微结构的纳米ZSM-5分子筛(NZ),介孔ZSM-5分子筛(MZ)和纳米薄层ZSM-5分子筛(NSZ).对合成的样品进行X射线衍射(XRD),扫描电子显微镜(SEM), N2吸附-脱附和氨程序升温脱附(NH3-TPD)表征,并与传统微孔ZSM-5分子筛(CZ)对比.结果表明,样品的介孔孔容和外表面积大小的顺序为NSZ > MZ > NZ > CZ,强/弱酸之比的顺序为CZ > MZ > NZ > NSZ.在甲醇制丙烯(MTP)反应中,催化剂的介微结构特征影响MTP反应的产物选择性及稳定性,丙烯和总低碳烯烃选择性随着介孔孔容的增加而增加, NSZ样品具有最高的丙烯选择性(47.5%)及总低碳烯烃选择性(78.4%).此外,介孔的引入能适当延长催化剂的寿命,具有适宜酸性质的NZ样品的催化寿命最长(200 h).  相似文献   

6.
负载型铜系分子筛催化剂在苯酚羟基化反应中的应用   总被引:1,自引:0,他引:1  
以介孔分子筛MCM-41、MCM-48和AIMCM-41以及微孔分子筛Naβ和MOR为载体,分别采用有机官能团化法和分步水热合成法制备了系列负载型催化剂,考察了其在苯酚羟基化反应中的活性;得到了不同载体类型、不同负载方法及不同助剂与反应活性的对应关系.结果表明:以微孔分子筛为载体的催化剂对副产物有明显的抑制作用.介孔分子筛AIMCM-41,MCM-41,MCM--48为载体时,催化剂在苯酚羟基化反应中的活性顺序为AIMCM-41〉MCM-48〉MCM-41,助剂镧和钴的引入可以有效抑制副产物的产生.  相似文献   

7.
以四乙基氢氧化铵(TEAOH)为微孔模板剂,十六烷基三甲基溴化铵(CTAB)为介孔模板剂,SiO2、Fumed Silica或TEOS为硅源,通过微波两步自组装合成Beta-MCM-41型中微双孔分子筛。然后以合成的Beta-MCM-41(BM-S-M)、实验室自制的Beta、MCM-41、SBA-15以及γ-Al2O3为载体,通过等体积浸渍15%MoO3,3%NiO和3%CoO,制备得到Co-Mo-Ni-BM-S-M等氧化物催化剂;并在间歇式高温高压反应釜中,在350℃、5.0MPa H2压力下,以二苯并噻吩(DBT)为模拟油品研究所制备催化剂的加氢脱硫性能及反应动力学。结果表明,SiO2为硅源,微波辐射合成的BM-S-M分子筛结构有序性更好,比表面积(1033.923m2/g)和孔容(0.729cm3/g)更大,孔径集中分布在3.08nm(中孔)和1.22nm(微孔),且具有较强的酸性中心。4种不同载体催化剂的DBT加氢脱硫活性顺序为Co-Mo-Ni-BM-S-M>Co-Mo-Ni-MCM-41>商业Co-Mo-Al2O3>Co-Mo-Ni-Beta。此外,4种不同载体催化剂的加氢脱硫过程符合拟一级动力学规律。  相似文献   

8.
以碳黑为第二模板剂在氟离子体系中一步水热合成了多级结构MCM-22分子筛组装体(简称为MCM-22-FC).考察了碳黑和氟离子对MCM-22分子筛形貌和催化性能的影响.MCM-22-FC分子筛是由大量片状晶体交错生长形成的组装体结构,其中MCM-22的片层结构更薄,在其固有的微孔中存在的晶间孔呈现大孔和介孔的特征.MCM-22-FC负载Mo后得到的Mo/MCM-22-FC催化剂在甲烷无氧芳构化反应(MDA)中提高了苯收率和芳烃选择性,并且提高了催化剂的寿命.通过氨气程序升温脱附(NH3-TPD)表征,吡啶红外(Py-IR)表征,结合热重(TG)分析,得出的结论是Mo/MCM-22-FC在MDA中优越的催化性能是由于氟离子进入到分子筛骨架当中,形成具有拉电子效应的结构单元,从而提高了分子筛的Br鰊sted酸量,较多的Br鰊sted酸性位将更多的Mo物种迁移至分子筛孔道内部,形成更多的MoCx或MoOxCy活性物种以及更有利于大分子产物扩散的MCM-22薄片层的结构.少量过剩的Br鰊sted酸性位在成型后保留在Mo/HMCM-22-FC催化剂活性中心抑制了积碳的形成,也有助于改善芳烃的选择性.  相似文献   

9.
以CTAB为模板剂,硅酸钠、氯化钴为原料,通过水热法合成含钴介孔分子筛(Co-MCM-41)。以所合成的Co-MCM-41做催化剂,采用化学气相沉积(CVD)法催化热解乙醇制备纳米碳管。通过XRD、FT-IR、TEM、N2吸附-脱附和Raman光谱等分析手段对所合成的介孔分子筛和纳米碳管进行了表征。结果表明:合成的Co-MCM-41样品具有MCM-41的介孔结构,比表面积较大且介孔有序性较好。以所合成的含钴介孔分子筛催化热解乙醇制备出管径均匀、管壁较厚、顶端开口的多壁纳米碳管。  相似文献   

10.
含铜MCM-48催化剂上糠醛选择性加氢制糠醇   总被引:1,自引:0,他引:1  
 以MCM-48为载体,采用新颖的负载方法(有机官能团化法)制备了铜基负载型催化剂. 结果表明,活性组分以较高的负载量均匀地分散在载体MCM-48表面,且负载活性组分后,分子筛的结构未被明显破坏. 本文首次将采用此负载方法制备的铜基MCM-48催化剂用于糠醛选择性加氢制糠醇反应,并得到了较高的活性、稳定性及糠醇选择性,该催化剂可以与商业催化剂相比,具有潜在的工业应用价值. 与一维结构的MCM-41相比,三维孔道结构的MCM-48有效避免了孔堵塞,大大提高了催化剂的稳定性. 引入助剂镧有利于羰基加氢,明显提高了糠醛的转化率. 使用后的催化剂并未被氧化,催化剂失活的主要原因之一是积炭.  相似文献   

11.
分别从MCM-22和MCM-49前驱体出发合成了MCM-36分子筛, 在液-固固定床反应器上对MCM-36分子筛的苯与丙烯液相烷基化反应性能进行了评价. 由MCM-22前驱体出发合成的MCM-36(A) 结晶度良好, 比MCM-22具有更高比表面积和介孔孔容, 酸量明显下降. 由MCM-49前驱体出发合成的MCM-36(B)的比表面积和介孔孔容增加, 小角XRD特征衍射峰强度低于MCM-36(A), 与MCM-49相比酸量下降幅度较小. 在苯与丙烯液相烷基化反应中MCM-36(A)的活性与MCM-22相当, 丙烯的转化率大于99.5%, 异丙苯的选择性比MCM-22提高了7%. MCM-36(B)的反应活性高于MCM-36(A), 而异丙苯的选择性低于MCM-36(A). MCM-36分子筛上苯与丙烯液相烷基化反应活性的提高归因于有效酸性位的增加,异丙苯选择性的提高则主要归因于B酸量的降低.  相似文献   

12.
以SiO2(SBA-15、MCM-48和SiO2)和TiO2-SiO2(MTS-9)介孔分子筛为载体负载8%WO3合成钨基催化剂,研究载体对丁烯歧化制丙烯性能的影响以及载体对丁烯转化率和丙烯选择性的影响。以SBA-15、MCM-48和SiO2为载体时,催化剂的丁烯转化率在30%~37%;以MTS-9为催化剂载体时,丁烯的转化率高达到37%~42%。对所有使用的催化剂进行多种技术表征。结果表明,活性组分在各种载体上的分散度不同,载体MTS-9具有更好的分散能力,表面活性物种数量最多,催化剂WO3/MTS-9的歧化性能最佳。  相似文献   

13.
HY/MCM-41/γ-Al2O3负载的硫化态Ni-Mo-P催化剂上萘的加氢   总被引:1,自引:0,他引:1  
 采用水热法合成了不同SiO2/Al2O3比的MCM-41介孔分子筛. 并分别以HY/MCM-41/γ-Al2O3, HY/γ-Al2O3和γ-Al2O3为载体,用浸渍法制备了Mo-Ni-P催化剂. 以萘为模型化合物,考察了硫化态Mo-Ni-P催化剂的加氢活性. 结果表明,不同载体负载的催化剂催化活性均随着活性组分负载量的增大而提高,其中掺杂大比表面MCM-41的HY/MCM-41/γ-Al2O3所负载的催化剂催化活性提高幅度最大. 由于MCM-41与HY分子筛在酸性和孔结构上存在互补性,因而催化剂对萘加氢存在协同作用. 提出了萘加氢的反应机理,认为反应网络包括两个平行路径: 一是萘加氢生成四氢萘后发生异构化或开环反应; 二是萘加氢生成四氢萘后进一步加氢生成十氢萘,继而发生异构化或开环反应.  相似文献   

14.
以碳黑为第二模板剂在氟离子体系中一步水热合成了多级结构MCM-22分子筛组装体(简称为MCM-22-FC)。考察了碳黑和氟离子对MCM-22分子筛形貌和催化性能的影响。MCM-22-FC分子筛是由大量片状晶体交错生长形成的组装体结构,其中MCM-22的片层结构更薄,在其固有的微孔中存在的晶间孔呈现大孔和介孔的特征。MCM-22-FC负载Mo后得到的Mo/MCM-22-FC催化剂在甲烷无氧芳构化反应(MDA)中提高了苯收率和芳烃选择性,并且提高了催化剂的寿命。通过氨气程序升温脱附(NH3-TPD)表征,吡啶红外(Py-IR)表征,结合热重(TG)分析,得出的结论是Mo/MCM-22-FC在MDA中优越的催化性能是由于氟离子进入到分子筛骨架当中,形成具有拉电子效应的结构单元,从而提高了分子筛的Brönsted酸量,较多的Brönsted酸性位将更多的Mo物种迁移至分子筛孔道内部,形成更多的MoCx或MoOxCy活性物种以及更有利于大分子产物扩散的MCM-22薄片层的结构。少量过剩的Brönsted酸性位在成型后保留在Mo/HMCM-22-FC催化剂活性中心抑制了积碳的形成,也有助于改善芳烃的选择性。  相似文献   

15.
以四丙基氢氧化铵(TPAOH)为单一模板剂,采用低温老化、高温晶化2段变温法合成出了球状多级孔ZSM-5分子筛。利用XRD、FT-IR、NH_3-TPD、SEM、TEM以及氮气吸-脱附等测试对合成样品进行了表征。结果表明:直径约为2μm左右的球状多级孔ZSM-5分子筛颗粒内的晶间介孔和大孔主要由棒状纳米晶堆积而成的,该产品具有较大的比表面积和介孔孔容。同常规水热法一步合成的微孔ZSM-5分子筛相比,2段变温法合成的多级孔ZSM-5分子筛具有更高的B酸/L酸比例(C_(BP)/C_(LP))、强酸/弱酸比例(C_s/C_w)以及活性位可接近性指数(ACI)。催化裂化评价结果显示,得益于活性位可接近性指数等指标的提高,球状多级孔ZSM-5分子筛比常规合成的微孔ZSM-5分子筛具有更高的转化率和丙烯收率等优异的催化性能。  相似文献   

16.
采用水热法合成了不同SiO2/Al2O3比的MCM-41介孔分子筛.并分别以HY/MCM-41/γ-A1203,HY/γ-A12O3和γ-Al2O3为载体,用浸渍法制备了Mo-Ni-P催化剂.以萘为模型化合物,考察了硫化态Mo-Ni-P催化剂的加氢活性.结果表明,不同载体负载的催化剂催化活性均随着活性组分负载量的增大而提高,其中掺杂大比表面MCM-41的HY/MCM-41/γ-Al2O3所负载的催化剂催化活性提高幅度最大.由于MCM-41与HY分子筛在酸性和孔结构上存在互补性,因而催化剂对萘加氢存在协同作用.提出了萘加氢的反应机理,认为反应网络包括两个平行路径:-是萘加氢生成四氢萘后发生异构化或开环反应;二是萘加氢生成四氢萘后进-步加氢生成十氢萘,继而发生异构化或开环反应.  相似文献   

17.
高分散加氢脱硫催化剂制备及其对二苯并噻吩的催化性能   总被引:3,自引:0,他引:3  
近年来,柴油发动机产生的废气污染已成为一个严重问题,环境法规对燃油中的硫含量限制越来越严格.因此,开发高效的深度加氢脱硫催化剂成为当今的热门课题之一.在柴油馏分中,由于存在空间位阻作用,二苯并噻吩(DBT)及其烷基取代的衍生物是最难脱除的.传统的加氢脱硫(HDS)催化剂通常是将活性金属担载在γ-Al2O3上.近年来,介孔材料如MCM-41,SBA-15,HMS,KIT-1和KIT-6等也被用作加氢脱硫催化剂载体,其大的比表面积有利于活性组分分散,大的规则孔径有利于反应物和产物扩散.其中,KIT-1介孔分子筛具有三维短蠕虫状介孔结构和大的比表面积,其酸性和水热稳定性都高于MCM-41.然而,由于无定形的孔壁使得介孔分子筛的酸性和水热稳定性较差,限制了其在石油化工领域的应用.而介微孔复合分子筛兼具了微孔分子筛酸性强、水热稳定性好和介孔分子筛的孔道优势,因此一经出现就引起了研究者广泛关注.有研究认为,增加载体酸性有利于加氢及促进C-S键氢解反应.载体中的微孔可高效吸附氢分子,降低HDS过程所需的温度和压力,实现温和条件下燃油超深度脱硫.目前,已有研究者将Y-MCM-41,介孔ZSM-5及Beta-KIT-6等多级孔分子筛用作催化剂载体,并进行了加氢脱硫性能研究,取得了良好效果.我们曾利用双模板剂一步晶化法水热合成了介微孔复合分子筛ZK-1.该分子筛既具有与KIT-1相似的短蠕虫状三维介孔孔道,又具有ZSM-5的微孔结构.其介孔孔径为2.7 nm,微孔孔径为0.6nm.该分子筛具有良好的水热稳定性和较高的酸性.本文在上述研究基础上,以不同硅铝比的ZK-1为载体通过过量浸渍法担载Co,Mo活性组分制备了CoMo/ZK-1 (Si/Al=30)和CoMo/ZK-1 (Si/Al=40)催化剂,并以相同方法制备了CoMo/γ-Al2O3,CoMo/AlKIT-1,CoMo/ZSM-5和CoMo/Mix(等量的ZSM-5和AlKIT-1混合物)催化剂作为对比.催化剂的N2吸附和NH3程序升温脱附表征结果表明,CoMo/ZK-1具有高于其他催化剂的比表面积(约700 m2/g)和介微孔结构,介孔孔径和微孔孔径分别为2.3 nm和0.6-1 nm.CoMo/ZK-1的酸量大于相同硅铝比的CoMo/AlKIT-1,这是由于ZK-1的介孔孔壁上含有沸石结构单元.通过H2程序升温还原表征可知,CoMo/ZK-1的高温氢耗峰面积较CoMo/γ-Al2O3和CoMo/ZSM-5相比明显减小,表明在CoMo/ZK-1上难还原的组分数量减少,载体与金属之间的相互作用减弱,这有利于金属组分的还原和硫化.紫外-可见漫反射光谱表征结果表明,在ZSM-5表面形成了大量的聚合态氧化钼物种,这是由于载体表面积小,金属组分分散不均匀.Co2AlO4或Co2SiO4相的出现是由于载体与金属间存在较强的相互作用.以ZK-1和AlKIT-1为载体的催化剂则避免了该情况的发生.从高分辨透射电镜照片可知,MoS2在ZK-1表面分散很均匀,其堆垛层数(2.5-2.7层)和片晶长度(3.9-4.0 nm)都达到较理想的数值,有利于形成更多的Co-Mo-S(Ⅱ)活性相.以二苯并噻吩为模型化合物,采用固定床反应器考察了上述6种催化剂的加氢脱硫活性.催化剂的脱硫率从高到低依次为:CoMo/ZK-1 (40)> CoMo/ZK-1 (30)> CoMo/γ-Al2O3> CoMo/ZSM-5> CoMo/Mix> CoMo/AlKIT-1.在较温和的反应条件(320℃,3MPa,WHSV=5h-1)下,CoMo/ZK-1对DBT的脱硫率达到93%以上.其原因主要是:(1)ZK-1的大比表面积使Co,Mo活性组分高度分散在载体表面;(2)载体与金属之间较适中的相互作用有利于活性组分的还原与硫化;(3)ZK-1含有的沸石结构单元使其比AlKIT-1具有更多的酸中心,有利于提高HDS反应活性.  相似文献   

18.
近年来,柴油发动机产生的废气污染己成为一个严重问题,环境法规对燃油中的硫含量限制越来越严格.因此,开发高效的深度加氢脱硫催化剂成为当今的热门课题之一.在柴油馏分中,由于存在空间位阻作用,二苯并噻吩(DBT)及其烷基取代的衍生物是最难脱除的.传统的加氢脱硫(HDS)催化剂通常是将活性金属担载在γ-Al_2O_3上.近年来,介孔材料如MCM-41,SBA-15,HMS,KIT-1和KIT-6等也被用作加氢脱硫催化剂载体,其大的比表面积有利于活性组分分散,大的规则孔径有利于反应物和产物扩散.其中,KIT-1介孔分子筛具有三维短蠕虫状介孔结构和大的比表面积,其酸性和水热稳定性都高于MCM-41.然而,由于无定形的孔壁使得介孔分子筛的酸性和水热稳定性较差,限制了其在石油化工领域的应用.而介微孔复合分子筛兼具了微孔分子筛酸性强、水热稳定性好和介孔分子筛的孔道优势,因此一经出现就引起了研究者广泛关注.有研究认为,增加载体酸性有利于加氢及促进C-S键氢解反应.载体中的微孔可高效吸附氢分子,降低HDS过程所需的温度和压力,实现温和条件下燃油超深度脱硫.目前,已有研究者将Y-MCM-41,介孔ZSM-5及Beta-KIT-6等多级孔分子筛用作催化剂载体,并进行了加氢脱硫性能研究,取得了良好效果.我们曾利用双模板剂一步晶化法水热合成了介微孔复合分子筛ZK-1.该分子筛既具有与KIT-1相似的短蠕虫状三维介孔孔道,又具有ZSM-5的微孔结构.其介孔孔径为2.7 nm,微孔孔径为0.6 nm.该分子筛具有良好的水热稳定性和较高的酸性.本文在上述研究基础上,以不同硅铝比的ZK-1为载体通过过量浸渍法担载Co,Mo活性组分制备了CoMo/ZK-1(Si/Al=30)和CoMo/ZK-1(Si/Al=40)催化剂,并以相同方法制备了CoMo/γ-Al_2O_3,CoMo/AlKIT-1,CoMo/ZSM-5和CoMo/Mix(等量的ZSM-5和AlKIT-1混合物)催化剂作为对比.催化剂的N_2吸附和NH_3程序升温脱附表征结果表明,CoMo/ZK-1具有高于其他催化剂的比表面积(约700 m~2/g)和介微孔结构,介孔孔径和微孔孔径分别为2.3 nm和0.6-1 nm.CoMo/ZK-1的酸量大于相同硅铝比的CoMo/AlKIT-1,这是由于ZK-1的介孔孔壁上含有沸石结构单元.通过H_2程序升温还原表征可知,CoMo/ZK-1的高温氢耗峰面积较CoMo/γ-Al_2O_3和CoMo/ZSM-5相比明显减小,表明在CoMo/ZK-1上难还原的组分数量减少,载体与金属之间的相互作用减弱,这有利于金属组分的还原和硫化.紫外-可见漫反射光谱表征结果表明,在ZSM-5表面形成了大量的聚合态氧化钼物种,这是由于载体表面积小,金属组分分散不均匀.Co_2AlO_4或Co_2SiO_4相的出现是由于载体与金属间存在较强的相互作用.以ZK-1和AlKIT-1为载体的催化剂则避免了该情况的发生.从高分辨透射电镜照片可知,MoS_2在ZK-1表面分散很均匀,其堆垛层数(2.5-2.7层)和片晶长度(3.9-4.0 nm)都达到较理想的数值,有利于形成更多的Co-Mo-S(Ⅱ)活性相.以二苯并噻吩为模型化合物,采用固定床反应器考察了上述6种催化剂的加氢脱硫活性.催化剂的脱硫率从高到低依次为:CoMo/ZK-1(40)CoMo/ZK-1(30)CoMo/γ-Al_2O_3CoMo/ZSM-5CoMo/MixCoMo/AlKIT-1.在较温和的反应条件(320℃,3MPa,WHSV=5h~(-1))下,CoMo/ZK-1对DBT的脱硫率达到93%以上.其原因主要是:(1)ZK-1的大比表面积使Co,Mo活性组分高度分散在载体表面;(2)载体与金属之间较适中的相互作用有利于活性组分的还原与硫化;(3)ZK-1含有的沸石结构单元使其比AlKIT-1具有更多的酸中心,有利于提高HDS反应活性.  相似文献   

19.
芳香族化合物的Friedel-Crafts酰基化反应是制备芳香酮的一类重要反应,传统的Lewis酸(如Al Cl3)和质子酸(如H2SO4)催化剂易制备,价格便宜,但存在对环境污染严重、与产物难分离等问题.因此,近年来研究者一直致力于环境友好催化剂的研发,其中分子筛因选择性好、与产物易分离、可再生和无污染等优点而日益受到人们的重视,尤其是MWW分子筛,由于具有较多的外表面酸性位,而在酰基化反应中表现出良好的抗积碳性能.本课题组曾讨论了对一系列不同模板剂(六亚甲基亚胺,HMI)含量的MCM-49分子筛进行NaO H与十六烷基三甲基溴化铵(CTAB)共处理的情况,而本文重点考察的是只用CTAB处理不同HMI含量的MCM-49分子筛时,其结构与酸性会如何变化,改性前后样品的结构与酸性借助XRD,N2吸脱附等温线测试,29Si与27Al MAS NMR,NH3-TPD,Py-IR与漫反射傅里叶变换红外光谱(DRIFTS)等技术进行表征.另外,将一系列样品用于催化苯甲醚(AN)与乙酸酐(AA)的酰基化反应,考察CTAB处理对MCM-49分子筛催化性能的影响.将含模板剂HMI的MCM-49分子筛原粉在不同温度(250,350,450或550°C)下焙烧,得到一系列不同孔道系统内保留HMI的样品,随后采用CTAB溶液(0.27 mol/L)对其在70°C下进行后处理1 h.结构表征的结果表明,在脱除模板剂HMI及CTAB处理的过程中,分子筛骨架结构基本未被破坏,同时,CTAB处理不能向分子筛中引入任何形式的介孔,无论是晶内介孔还是晶间介孔.在CTAB处理时,可以清除分子筛中部分无定形物种,尤其是无定形Al物种,同时也可能发生部分非骨架Al原子重新进入分子筛骨架的情况,造成骨架铝的比例相对提高.根据29Si与27Al MAS NMR结果可以推断,进入分子筛骨架的Al原子可能会取代T3位置上的Si原子,亦或直接进入T2或T3位置缺陷位.酸性表征的结果表明,CTAB修饰后样品Br?nsted酸量比HMCM-49明显提高,并随HMI含量的逐渐降低呈现先增加后降低的趋势,而Lewis酸量则相对于HMCM-49有所降低.将一系列CTAB修饰前后的MCM-49样品用于催化AN与AA的酰基化反应,反应条件为:压力1.0 MPa、温度110°C、总质量空速WHSV(AN+AA)为10.2 h-1及原料中AN与AA的摩尔比为5:1.反应数据表明,相对于HMCM-49样品,CTAB修饰后样品对应的AA转化率显著提高(初始转化率由51.4%最高增加至85.0%),并随CTAB处理过程中HMI含量的逐渐降低呈现先增加后降低的趋势,而产物选择性则基本没有变化.各样品的AA初始转化率与其Br?nsted酸量基本呈现正向关联.通过间二甲苯歧化反应预积碳堵塞超笼及碱性探针分子2,4-二甲基喹啉吸附覆盖表面半超笼的方法,研究CTAB修饰前后各样品的不同孔道系统对酰基化反应的催化贡献.结果表明,酰基化反应主要发生在MCM-49分子筛的表面半超笼,其次为超笼,正弦孔道的贡献很小.另外,CTAB修饰后样品催化活性的提高主要来自于不含HMI的孔道系统的贡献,进一步验证在CTAB处理过程中,改性作用主要发生在MCM-49分子筛中不含HMI的区域.结合表征和反应评价结果,提高酰基化反应活性需尽可能提高催化剂的Br?nsted酸量,这是分子筛催化剂今后改进的一个主要方向.  相似文献   

20.
杨恒权  张高勇  洪昕林  朱银燕 《化学学报》2003,61(11):1786-1791
通过对介孔分子筛HMS和MCM-41表面修饰,将乙二胺基和2,4-戊二酮引入到介 孔分子筛孔道内,制备出乙二胺基和戊二酮官能化介孔分子筛。首次将烯烃环氧化 均相催化剂MoO_2(acac)_2固载到乙二胺基和戊二酮官能化介孔分子筛孔道内,制 备出新型的、易回收、可重复使用的烯烃环氧化多相催化剂。环已烯催化环氧化表 明,该催化剂的催化活性与均相催化剂MoO_2(acac)_2相当,选择性大于80%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号