首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
铑膦络合催化剂失活机理研究   总被引:3,自引:0,他引:3  
利用动力学实验装置及加温加压“原位”红外光谱和紫外光谱等检测手段,研究了氧、氯、硫及其化合物对铑膦络合物催化丙烯氢甲酰化反应的影响及作用机理。实验表明,上述物质能与催化剂的配位体三苯基膦及铑中心金属发生反应,其结果破坏了催化剂的活性结构,导致催化剂失活。不同的氯化物和硫化物对催化性能影响程度有明显差别。实验并证明,氧中毒是暂时性的,而氯中毒是永久性的。  相似文献   

2.
无论是均相或是多相催化反应,由于受各种参数的影响,整个催化过程是极为复杂的。尽管如此,利用各种近代物理测试方法,人们仍有可能从分子水平乃至原子水平上来研究催化反应,指导催化剂的制备,选择最佳反应条件。反应状态下的原位红外光谱测试方法,是近年来发展较为迅速的测试方法之一,而实现原位红外光谱测试的关键设备,是能耐高温高压的红外光谱样品池。几年前,作者曾经报导了加温加压原位红外光谱液体样品池的研制工作,该样品池已在均相络合催化反应机理的研究中得到了应用。为了研究多相催化及均相固相化反应体系,新近又研制了高温高压(真空)原位红外光谱气固样品池。  相似文献   

3.
稳态同位素瞬变动力学分析是研究非均相催化反应动力学和反应机理的有效方法。由该技术既可定性获取有关反应机理方面的信息, 又可得到包括不同反应吸附中间物种的量、覆盖度、表面寿命, 基元反应的速率常数, 活性位的数量及其分布等定量的原位动力学信息。本文就SSITKA 实验装置、反应器的选择、动力学参数的求取、反应机理的推断以及SSITKA 与原位FTIR 的有机结合等方面进行了综述。  相似文献   

4.
烯烃氢甲酰化反应(Hydroformylation或Oxo reaction)是当前工业上使用过渡金属络合物为催化剂的少数几个重要反应(Wacker, Vinyl acetate, Oxo, MeOH carbonylation和Ziegler-Natta processes)之一。本文使用20余种单核金属络合物、多核和异核金属簇化合物,考察了不同金属中心、配位体和反应参数对烯烃氢甲酰化反应的影响,测定了反应速度常数和活化能,利用在线原位红外光谱考察了反应中间络合物的生成过程和影响因素,讨论了反应机理,得出了某些一般性的烯烃氢甲酰化反应的催化作用规律。  相似文献   

5.
刘晔  贺德华 《分子催化》2000,14(3):227-231
考察了反应温度,CO/H2压力和P/Rh比等因素,对Rh/Ph3PO催化剂催化混合辛烷氢甲酰化反应活性的影响,优化出最佳反应条件,并采用加热加压的原位红外表征方法,跟踪了在1-辛烯反应中Rh/Ph3PO催化剂的活化、中间活性物种的产生和分解消失等瞬态变化情况。  相似文献   

6.
用加温加压原位红外光谱法研究了YCCo_3(CO)_(?)(Y=H,C_3H_7,Ph,Cl)在低压醛化条件下的热稳定性及对1-己烯的醛化机理。升温过程中的光谱变化指出,这些簇在130℃,4.0MPa的合成气压力下至少部分分解生成Co_2(CO)_(?),最后降解为HCo(CO)_4。通过对1-己烯的醛化反应研究发现,该簇络合物对1-己烯的醛化反应机理相应於Co_2(CO)_(?)的反应机理。Y的电子效应对簇的稳定性有一定影响并进而影响其催化活性。  相似文献   

7.
本文利用原位红外光谱方法对铑基担载液相催化剂(SLPC)在接近于实际反应条件下进行了表征。结果表明,新鲜催化剂上,铑膦络合物主要以二聚物的形式存在,如Rh_2(CO)_2(PPh_3)_4而在合成气或反应气氛中,催化剂铑膦络合物以单核络合物HRh(CO)_2(PPh_3)_2的形式存在。文中还对SLPC在CO,H_2,C_2-H_4,空气和HCl中处理时铑络合物种的变化进行了原位观察。实验结果表明,SLPC上活性铑络合物与对应的均相过程完全一致,进一步证实了SLPC催化在微观上就是一个均相催化过程。  相似文献   

8.
单光束红外光谱技术(原位傅立叶透射变换红外、原位漫反射红外和衰减全反射红外光谱技术)虽然已经用于气固相多相催化反应的原位表征中,但这些光谱在真实反应条件下会受到气体分子振动光谱和加热条件下产生的发射光谱的严重影响,不能实时获得催化剂表面的真实信息.另外,由于在真实的气固相多相催化反应过程中,催化剂本底的信息会随着反应时间的延长而发生变化,因此单光束红外光谱技术在扣除本底信息方面存在误差.为了实现在反应条件下,实时、原位表征催化剂表面的状态,我们报道了一种双光束红外光谱表征技术.该技术包括双光束红外光谱系统及双光束红外反应池.其特征在于:实时双光束原位红外光谱系统由两台完全相同的红外光谱仪和双光束红外反应池组成.双光束红外反应池由完全相同的样品池和参考池连接而成,样品池和参考池处于同一水平线上分别对应于样品光谱仪和参考光谱仪,由计算机同步控制两台红外光谱仪,排除实时状态下的气体分子振动光谱干扰和加热条件下产生的发射光谱干扰.该技术可以对真实反应条件下的气固相多相催化反应进行实时原位表征.通过应用程序的关联可以实时、同步采集样品光束和背景光束谱图来得到催化剂表面物种随反应时间变化的真实信息.该技术克服了单光束红外光谱在原位多相催化反应表征方面的缺陷,使表征结果变得更加精确可靠.该技术还可以在变化的气相组分条件下,获得不同温度下、实时的催化剂表面活性中心、活性相和中间物种的信息.采用上述双光束红外光谱仪对丁烯在纳米HZSM-5催化剂上芳构化反应过程进行了实时、原位观测,首次在实际反应条件下,观察到了异丁烯在纳米HZSM-5沸石的表面Br?nsted酸中心上经历吸附、活化、聚合、环化等反应步骤生成芳烃的过程.  相似文献   

9.
单光束红外光谱技术(原位傅立叶透射变换红外、原位漫反射红外和衰减全反射红外光谱技术)虽然已经用于气固相多相催化反应的原位表征中,但这些光谱在真实反应条件下会受到气体分子振动光谱和加热条件下产生的发射光谱的严重影响,不能实时获得催化剂表面的真实信息.另外,由于在真实的气固相多相催化反应过程中,催化剂本底的信息会随着反应时间的延长而发生变化,因此单光束红外光谱技术在扣除本底信息方面存在误差.为了实现在反应条件下,实时、原位表征催化剂表面的状态,我们报道了一种双光束红外光谱表征技术.该技术包括双光束红外光谱系统及双光束红外反应池.其特征在于:实时双光束原位红外光谱系统由两台完全相同的红外光谱仪和双光束红外反应池组成.双光束红外反应池由完全相同的样品池和参考池连接而成,样品池和参考池处于同一水平线上分别对应于样品光谱仪和参考光谱仪,由计算机同步控制两台红外光谱仪,排除实时状态下的气体分子振动光谱干扰和加热条件下产生的发射光谱干扰.该技术可以对真实反应条件下的气固相多相催化反应进行实时原位表征.通过应用程序的关联可以实时、同步采集样品光束和背景光束谱图来得到催化剂表面物种随反应时间变化的真实信息.该技术克服了单光束红外光谱在原位多相催化反应表征方面的缺陷,使表征结果变得更加精确可靠.该技术还可以在变化的气相组分条件下,获得不同温度下、实时的催化剂表面活性中心、活性相和中间物种的信息.采用上述双光束红外光谱仪对丁烯在纳米HZSM-5催化剂上芳构化反应过程进行了实时、原位观测,首次在实际反应条件下,观察到了异丁烯在纳米HZSM-5沸石的表面Br?nsted酸中心上经历吸附、活化、聚合、环化等反应步骤生成芳烃的过程.  相似文献   

10.
研制的高低温环境下红外光谱原位表征系统将红外光谱同高低温原位红外体系组合起来,为高低温原位红外反应机理的深入研究提供有效信息,同时为构建高效稳定的原位红外研究提供新的技术支撑.高低温环境下红外光谱原位表征系统通过液氮制冷与加热调控,在真空或常压的状态下为光谱测量提供低温恒温环境,并可在一定的温度范围内提供可进行原位预处理或原位反应的高温环境.高低温环境下红外光谱原位表征系统可以适用于任何物质研究,尤其适用于液氮环境下气体吸附研究,比如反应中间体的过程捕捉、探针分子弱吸附方面的研究、单原子催化剂的鉴定以及探针分子吸附表征等.因而高低温环境下红外光谱原位表征系统在这些领域具有极高的通用性和实用性.  相似文献   

11.
应用加温加压原位红外光谱技术,考察了7种不同结构的有机膦配位体的电子授予能力、钴-膦羰基配合物的稳定性及其烯烃氢甲酰化催化活性等三者之间的关系.结果表明,配位体的电子授予能力强,则钴-膦羰基配合物的稳定性好,烯烃氢甲酰化活性亦高;反之亦然.对于烯烃氢甲酰化制脂肪醇的钴-膦催化剂,选择配位能力较强的三烷基膦类型的配位体较为适宜.  相似文献   

12.
With a newly developed analytical technique, i.e. high temperature/pressure IR cell coupled to the reactor, it was possible to study the mechanism of hydroformylation at reaction conditions. It has been conclusively found that the hydrogenolysis of the acyl cobalt complex is performed by HCo(CO)4 and not by molecular H2, as proposed byHeck andBreslow.Therefore the formation of HCo(CO)4 from Co2(CO)8 is an intermediate step in the sequence of hydroformylation reaction steps. The rate of hydroformylation of any of the olefins is smaller than the rate of formation of HCo(CO)4 from Co2(CO)8. The IR spectra reveal that always more than 30% of the cobalt is in the form of HCo(CO)4 under the reaction conditions.It is found that the formation of HCo(CO)4 from Co2(CO)8 is the slowest and most temperature-dependent step of the hydroformylation reaction. Also the reaction between olefin and HCo(CO)4 is slower than the hydrogenolysis of the acyl complex.The experiments were carried out under industrial oxo conditions. The diffusional effects were eliminated.With 6 FiguresPart of the Ph.D. dissertation 1974. N. H. Alemdarolu, J. M. L. Penninger, andE. Oltay, Mechanism of Hydroformylation, Part II. Mh. Chem.107, 1043 (1976).  相似文献   

13.
Kramer JW  Joh DY  Coates GW 《Organic letters》2007,9(26):5581-5583
Substituted 3-hydroxy-delta-lactones (3HLs) are valuable intermediates in the synthesis of pharmaceuticals and other biologically active natural products. Herein we report the first example of the catalytic carbonylation of substituted homoglycidols to 3HLs using HCo(CO)4. Upon optimization of the catalyst and reaction conditions, a functionally diverse set of 3HLs was prepared. Mechanistic insight was gained by observation of the carbonylation reaction using in situ IR spectroscopy, and we propose a mechanism that is consistent with previously studied epoxide carbonylation systems.  相似文献   

14.
Extended Hückel Theory calculations have been carried out in a study of the most important cobalt carbonyls and hydrocarbonyls involved in the hydroformylation reaction. The geometries of the stable isomers of Co2(CO)8, Co2(CO)7, Co(CO)4, Co(CO)3 have been calculated and used to interpret the changes in the IR spectrum of Co2(CO)8 observed on varying the temperature. The reaction paths for the interconversions of the stable isomers have also been investigated. The optimized geometry of HCo(CO)4 agrees well with the experimental structure. The Cs symmetry found for the most stable isomer of HCo(CO)3 is of much interest, serves to explain the formation of the complex with olefins.  相似文献   

15.
3,3-Dimethylbutene is converted into 4,4-dimethylpentanal at ?15°C in the presence of HCo3(CO)9 and HCo(CO)4 under argon. Under the same conditions there is no reaction in the presence of HCo(CO)4 alone. Labeling experiments show that in the formed aldehyde the hydrogen atom of the formyl group has come from the mononuclear complex, and the hydrogen atom of the alkyl moiety from the trinuclear cluster.  相似文献   

16.
The dinuclear complex [Co(2)(CO)(6)[P(OPh)3]2] (2) has been synthesised and was fully characterised. The solid state structure revealed a trans diaxial geometry, no bridging carbonyls, and Co-Co and Co-P bond lengths of 2.6722(4) and 2.1224(4) Angstrom, respectively. Catalysed hydroformylation of 1-pentene with 2 was attempted at temperatures in the range 120 to 210 degrees C and pressures between 34 and 80 bar. High pressure spectroscopy (HP-IR and HP-NMR) was used to detect hydride intermediates. High pressure infrared (HP-IR) studies revealed the formation of [HCo(CO)(3)P(OPh)3] (4) at ca. 110 degrees C, but at higher temperatures absorption bands corresponding to [HCo(CO)(4)]() were observed. The hydride intermediate 4 has also been synthesised and characterised. Upon increased ligand concentration, HP-IR studies showed the formation of new carbonyl absorption bands due to a higher substituted cobalt carbonyl complex-[HCo(CO)(2)[P(OPh)3]2] (5), which is believed to be catalytically less active. Complex 5 has been synthesised independently and was fully characterised. A low temperature crystal structural study of 5 revealed a trigonal bipyramidal structure with a trans H-Co-CO arrangement and two equatorial phosphite ligands, the Co-P bond lengths being 2.1093(8) and 2.1076(8)[Angstrom], respectively.  相似文献   

17.
对于羰基混合金属簇的合成,利用配体的交换反应,制备含有不同配体的羰基混合金属簇。配体取代后的羰基金属簇的性质发生了变化,如可逆氧化还原性质,催化活性与选择性等。由于过渡金属原子的性质各不相同,配位取代反应也有很大差异,所以研究配体取代反应,制备含有不同配体的羰基过渡金属簇成为金属簇化学的重要组成部分。  相似文献   

18.
High pressure IR and UV spectroscopic experiments confirm the Heck and Breslow mechanism of the hydroformylation of 1-octene and cyclohexene with Co2(CO)8 as the starting catalyst. The major repeating unit is HCo(CO)4, which is formed via the reaction of acylcobalt tetracarbonyl with H2. The rates are 6.7 × 10?4 mol l?1 min?1 and 8.8 × 10?5 mol l?1 min?1 for 1-octene and cyclohexene, respectively at 80°C and 95 bar CO/H2 = 1 in methylcyclohexane. The alternative reaction of RCOCo(CO)4 with HCo(CO)4 is only a minor pathway, with rates of 1.8 × 10?5 mol l?1 min?1 and 1.1 × 10?5 mol l?1 min?1 for 1-octene and cyclohexene, respectively. It represents an exit from the catalytic cycle. The activation of the catalyst precursor Co2(CO)8 is the slowest step of the reaction.  相似文献   

19.
Addition of ruthenium compounds (Ru(acac)3, Ru3(CO)12) to cobalt catalysts for pent-3-ene nitrile alkoxycarbonylation increases both activity and selectivity in the production of cyanoesters by (i) reducing the amount of Co(II) and facilitating the generation of the active carbonylation species, HCo(CO)n, and (ii) improving the isomerisation of pentene nitriles, providing significant amounts of pent-4-ene nitrile for the formation of the ω-ester.  相似文献   

20.
The three‐component [3+2+1] cycloaddition of epoxides, imines, and carbon monoxide to produce 1,3‐oxazinan‐4‐ones has been developed by using [HCo(CO)4] as the catalyst. The reaction occurs for a wide variety of imines and epoxides, under 60 bar of CO pressure at 50 °C, to produce 1,3‐oxazinan‐4‐ones with different substitution patterns in high yields, and provides an efficient and atom‐economic route to heterocycles from simple and readily available starting materials. A plausible mechanism involves [HCo(CO)4]‐induced ring‐opening of the epoxide, followed by sequential addition of carbon monoxide and the imine, and then ring closure to form the product accompanied by regeneration of [HCo(CO)4].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号