首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sol-Emulsion-Gel Synthesis of Alumina-Zirconia Composite Microspheres   总被引:1,自引:0,他引:1  
Oxide microspheres in the system Al2O3-ZrO2 (AZ), with the Al2O3:ZrO2 molar ratios as 87:13, 78:22, 74:26 and 64:36 were obtained from emulsified bi-component sols by the sol-emulsion-gel method. The surfactant concentration and viscosity of the sols were found to affect the characteristics of the derived microspheres. The gel and calcined microspheres were investigated by using thermogravimetry analysis (TGA), differential thermal analysis (DTA), X-ray diffraction (XRD), optical and scanning electron microscopy (SEM) and particle size analysis. TGA indicated the removal of most of the volatiles, i.e. 40 ± 2 wt% up to about 500°C. Crystallization of gel microspheres at about 900°C was confirmed by DTA and XRD. XRD results also indicated the retainment of tetragonal (t-)ZrO2, in the absence of stabilizers, at 1600°C. The optical and scanning electron microscopy confirmed the spherical morphology of the gel and calcined particles. The particle size distribution of the AZ microspheres calcined at 1200°C for 1 h exhibited a size range of 5–60 m with the average particle size (d 50) varied from 23 to 26 m.  相似文献   

2.
We have examined photopolymerization of highly monodisperse microdroplets of monomer solutions under UV-light radiation. Microdroplets were generated using a modified vibrating aerosol generator, and the diameter of the droplets can be tuned to any size between 5 to 100 m. Polymer particles derived from the droplets were characterized by optical microscopy and SEM. The results show that the polymer particles, under optimum conditions, can be highly spherical and monodisperse. The diameter and morphology of resulting microspheres depend on the diameter of the monomer solution droplets, monomer concentration, photopolymerization reaction temperature, residence time, and droplet dispersion.  相似文献   

3.
Biodegradable and pH‐sensitive PEAs based on dual amino acids are designed, synthesized, and characterized. Insulin can be loaded into the PEA microspheres by a solid‐in‐oil‐in‐oil technique with high encapsulation efficiency. The feasibility of PEA microspheres as oral insulin delivery carriers is evaluated in vitro and in vivo. The hydrophobic leucine groups on PEA seem to play an important role in the pH‐dependent release mechanism and cytotoxicity of PEA microspheres. Oral administration of insulin‐loaded PEA microspheres to streptozotocin‐induced diabetic rats at 60 IU kg?1 is able to reduce fasting plasma glucose levels to 49.4%. These results indicate that PEA microspheres are potential new vehicles for insulin oral delivery.

  相似文献   


4.
The aim of the present study was to prepare and evaluate microspheres of Eudragit (RS, RL and RSPO) containing an anticancer drug 5-FU. Microspheres were prepared by O/O solvent evaporation method using a acetone/liquid paraffin system. Magnesium stearate was used as the droplet stabilizer and n-hexane was added to harden the microspheres. The prepared microspheres were characterized for their micromeretic properties and entrapment efficiency; as well by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X-ray powder diffractometry (XRPD), thin layer chromatography (TLC) and scanning electron microscopy (SEM) revealed the crystalline nature of drug in a final state. The in vitro release studies were performed in a Phosphate Buffer Solution (PBS) pH 7.4. The best fit release kinetics was achieved with a Higuchi plot. The yields of preparation and entrapment efficiencies were very high with a larger particle size for all the formulations. Mean particle size, entrapment efficiency and production yield were highly influenced by the type of polymer and polymer concentration. It is concluded from the present investigation that various Eudragit are promising controlled release carriers for 5-FU.  相似文献   

5.
Porous polylactide (PLA) microspheres were fabricated by an emulsion‐solvent evaporation method based on solution induced phase separation. Scanning electron microscopy (SEM) observations confirmed the porous structure of the microspheres with good connectivity. The pore size was in the range of decade micrometers. Besides large cavities as similarly existed on non‐porous microspheres, small pores were found on surfaces of the porous microspheres. The apparent density of the porous microspheres was much smaller than that of non‐porous microspheres. Fabrication conditions such as stirring rate, good solvent/non‐solvent ratio, PLA concentration and dispersant (polyvinyl alcohol, PVA) concentration had an important influence on both the particle size and size distribution and the pore size within the microspheres. A larger pore size was achieved at a slower stirring rate, lower good solvent/non‐solvent ratio or lower PLA concentration due to longer coalescence time. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
In this work, a new kind of aliphatic polyesteramide (PEA) copolymer based on -caprolactone and 6-aminocaproic acid was synthesized by the melt polycondensation method. Biodegradable PEA fibers were processed by the melt-spinning method. 1H-NMR, FTIR, SEM, and tensile testing were used to characterize the degradation of PEA fibers in concentrated alkaline solution. The PEA fiber undergoes surface erosion in such concentrated alkaline solutions.  相似文献   

7.
以油酸改性二氧化硅为核,丙烯酰胺、2-丙烯酰胺-2-甲基丙磺酸为单体,采用反相乳液法合成了核壳聚合物微球调驱剂,其结构、微观形貌和性能经IR, SEM和TGA表征。结果表明:微球呈不规则球形,粒径分布较集中,中值粒径约300 nm;室温下,微球溶胀7 d可达最大膨胀倍率(7.43倍);1%微球可使油水界面张力降至0.028 mN·m-1。岩心流动实验结果表明:与常规微球相比,核壳微球兼具封堵和洗油双重效果,注入0.5 PV微球,二次水驱升至3.36 MPa,累积采收率达93.86%。  相似文献   

8.
The competitive adsorption of bovine fibrinogen (BFb) and bovine serum albumin onto polymer microspheres from the mixture solution was examined under various protein-to-microsphere ratios using various homopolymer microspheres and poly(2-hydroxyethyl methacrylate)/polystyrene composite microspheres having heterogeneous surface structures consisting of both hydrophilic and hydrophobic parts. They were produced by emulsifier-free (seeded) emulsion polymerizations. The selective adsorption of BFb was not observed for the homopolymer microspheres, but observed for the composite polymer microspheres having optimum compositions.Part CXXXVIII on the series Studies on Suspension and Emulsion  相似文献   

9.
Mucoadhesive chitosan microspheres of acyclovir were prepared to prolong the gastric residence time using simple emulsification phase separation technique. The particle morphology of drug-loaded formulations was measured by SEM and the particle size distribution was determined using an optical microscope. The release profile of acyclovir from microspheres was examined in simulated gastric fluid (SGF pH 1.2). The particles were found to be discreet and spherical with the maximum particles of an average size (31.62 ± 4.64). The entrapment efficiency was found to be in the range of 40.24 to 67.29%. The concentration of the glutaraldehyde (25%v/v) as a cross-linker 2 ml and drug polymer ratio of 1:2 caused an increase in the entrapment efficiency and the extent of drug release. The optimized chitosan microspheres were found to possess good bioadhesion (79.89 ± 1.01%). The gamma-scintigraphy study showed the gastric residence time of more than 6 hours which revealed that optimized formulation could be a good choice for gastroretentive systems.  相似文献   

10.
以醋酸乙烯酯(VA)、 马来酸酐(MA)和商品化的紫外吸收剂2-{2-羟基-5-[2-(甲基丙烯酰氧)乙基]苯基}-2H-苯并三唑(NB)为单体, 偶氮二异丁腈(AIBN)为引发剂, 通过自稳定沉淀聚合法(2SP)制备了具有广谱紫外屏蔽性能的单分散三元共聚物微球(PVMN); 研究了溶剂、 单体配比、 引发剂用量、 单体浓度、 反应温度和反应时间对共聚物微球形态和性能的影响. 研究结果表明, 体积比为7∶3的苯甲酸乙酯/正庚烷混合溶剂是2SP法合成单分散PVMN微球的理想溶剂. 随着单体配比中紫外吸收单体NB比例的增加, 引发剂用量、 单体浓度、 反应温度的提高和反应时间的延长, 微球的粒径随之增大, 进而改变了微球的紫外屏蔽性能. 本文制备的微球的粒径范围为(249±19)~(1434±213) nm, 优化得到的PVMN微球可屏蔽约90%的紫外光. 该策略还可扩展到其它可用作紫外吸收剂的乙烯基单体, 是一种制备稳定高分子紫外屏蔽剂的通用方法.  相似文献   

11.
聚二乙烯基苯微球的合成及其表征研究   总被引:5,自引:0,他引:5  
采用分散聚合方法制备了聚二乙烯基苯微球 ,研究了引发剂、稳定剂、单体 溶剂比例和溶剂种类对微球粒径及其分布的影响 ,在适当的条件下可以得到平均粒径较大、粒径分布较窄的微球 .用红外光谱法研究了聚合物微球内稳定剂、悬挂双键以及对位和间位二乙烯基苯含量随聚合过程的进行发生的变化 .测得的微球TG曲线表明 ,聚合物微球具有良好的热稳定性 .  相似文献   

12.
13.
采用超声粉碎和悬浮聚合法,以甲基丙烯酸甲酯、苯乙烯为主单体,过氧化苯甲酰为引发剂,颜料黄74为着色剂,合成了彩色聚合物微球。光学显微镜以及扫描电镜的观察和分析表明:利用超声粉碎法可使聚合物微球的粒径从几百微米降低到几微米;热熔融后,聚合物微球内包覆了细小的颜料颗粒。  相似文献   

14.
In the present study, we attempted to prepare biodegradable microspheres of polylactic acid containing aripiprazole in order to achieve its controlled release profile suitable for parenteral administration. Biodegradable microspheres were prepared by solvent evaporation method using methylene dichloride as a solvent. The optimization of various formulation variables (e.g., stirring speed, and polymer:drug ratio, stabilizer concentration) to obtain spherical particles was also investigated. The optimized product was further characterized for various in vitro attributes, such as particle size and its distribution, encapsulation efficiency, surface properties, percentage yield, and in vitro release. Changing the ratio of polymer, stabilizers, and leaching agent (sodium chloride) affected the entrapment efficiency and release rate of aripiprazole. The release quantum was 88.41% when stirring rate was 2000 rpm and it was further increased to 94.65% when stirring speed was increased to 3000 rpm (Formulation E). Drug entrapment of microspheres was increased by increasing the concentration of PVP and maximum entrapment (62.35%) was obtained at 4% concentration of PVP (Formulation E). Spherical particles with good surface characteristics were obtained at stirring rate 3000 rpm and drug:polymer ratio 1:10.  相似文献   

15.
An inexpensive and simple method was adopted for the preparation of chitosan microspheres, crosslinked with glutaraldehyde (GA), for the controlled release of an insoluble drug‐ibuprofen, which is a commonly used NSAID (non‐steroidal anti‐inflammatory drug). The chitosan microspheres were prepared by different methods and varying the process conditions such as rate of stirring, concentration of crosslinking agent, and drug:polymer ratio in order to optimize these process variables on microsphere size, size distribution, degree of swelling, drug entrapment efficiency, and release rates. The absence of any chemical interaction between drug, polymer, and the crosslinking agent was confirmed by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric analyses (TGA) techniques. The microspheres were characterized by optical microscopy, which indicated that the particles were in the size range of 30–200 µm and scanning electron microscopy (SEM) studies revealed a smooth surface and spherical shape of microspheres. The microsphere size/size distributions were increased with the decreased stirring rates as well as GA concentration in the suspension medium. Decreasing the concentration of crosslinker increased the swelling ratio whereas extended crosslinking exhibited lowered entrapment efficiency. The in vitro drug release was controlled and extended up to 10 hr. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Eudragit RS microspheres containing chitosan hydrochloride were prepared by the solvent evaporation method using acetone/liquid paraffin solvent system and their properties were compared with Eudragit RS microspheres without chitosan, prepared in our previous study. Different stirring rates were applied (400-1200 rpm) and drug content, Higuchi dissolution rate constant, surface and structure characteristics of the microspheres were determined for each size fraction. An increase in average particle size with a reduction of stirring rate appeared in limited interval in both series. The average particle size of microspheres without chitosan, prepared at the same stirring rate, was smaller. Pipemidic acid content increased with increasing fraction particle size, but not with increasing stirring rate as it was observed for microspheres without chitosan. We presume that high pipemidic acid content in larger microspheres is a consequence of cumulation of undissolved pipemidic acid particles in larger droplets during microspheres preparation procedure. Pipemidic acid release was faster from microspheres with chitosan and no correlation between Higuchi dissolution rate constant and stirring rate or fraction particle size was found, though it existed in the system without chitosan. Structure and surface characteristics of microspheres observed by scanning electron microscope (SEM) were not changed significantly by incorporation of chitosan. But in contrast with microspheres without chitosan, the surface of chitosan microspheres was more porous after three hours of dissolution. It is supposed that the influence of particle size fraction and stirring rate on release characteristics is expressed to a great extent through porosity and indirectly through total effective surface area, but the incorporation of highly soluble component i.e. chitosan salt hides these effects on drug release. In conclusion, changes in biopharmaceutical properties due to varying stirring rate and fraction particle size exhibited the same direction as those reported for the microspheres without chitosan, although they are less expressed because of increased experimental variability, likely caused by chitosan.  相似文献   

17.
Poly[(N-isopropylacrylamide-co-acrylamide-co-(hydroxyethylmethacrylate))] [poly(NIPAAm-co-AAm-co-HEMA)] copolymer was synthesized as a new thermoresponsive material possessing a lower critical solution temperature (LCST) around 37 °C in phosphate buffer, pH 7.4, at a solution concentration of 1%, w/v. The influence of polymer concentration on LCST was determined by cloud point measurements and by microcalorimetric analysis. The copolymer was transformed in hydrogel microspheres by suspension reticulation of OH groups with glutaraldehyde. The volume phase transition temperature (VPTT) of microspheres was determined by a new approach, which involves measurement of the increase in concentration of a blue dextran (BD) solution at different temperatures in the presence of dry microspheres. The minimum BD concentration that gives reliable and reproducible results was determined to be 1 mg/ml. However, the higher is the concentration of BD in solution the smaller is the error. Contrary to solution of the linear polymer which displays a sharp phase transition temperature, the dependence of water regain of the hydrogel with temperature lasts from 4 °C to 50 °C.  相似文献   

18.
The increasing demand for monodispersed cross‐linked polymers in high‐quality applications requires continuous improvement in their preparation process. In this study, an appropriate amount of a chain transfer agent was added to a traditional cross‐linking system, resulting in the preparation by one‐step dispersion polymerization of cross‐linked polystyrene (PS) microspheres with a particle size of 3.867 μm and a diameter coefficient of variation of 0.011. The particles were characterized using scanning electron microscopy (SEM) and an Ubbelohde viscometer. The results show that the tertiary dodecyl mercaptan (TDDM) chain transfer during nucleation increases the oligomer concentration, promotes the aggregation of the oligomers, increases the primary particle size, and reduces the cross‐linking effect. This controls the volume of cross‐linked chains in the primary particles, thus avoiding the problem of poor dispersion of the polymer microspheres due to the introduction of divinylbenzene (DVB). This study produces a preparation method for cross‐linked microspheres.  相似文献   

19.
Polyacrylamide microparticles were directly produced by radiation-induced dispersion polymerization in aqueous alcohol media using poly(N-vinylpyrrolidone) as a steric stabilizer at room temperature. The hydrodynamic diameter of a polymer particle and its distribution were measured on a dynamic laser light-scattering spectrometer. This method takes advantages of the specialties of radiation induction, and highly uniform polymer microspheres were obtained with high conversion. The number of the particle produced in the early stage of the polymerization was found to be constant during the remainder of the polymerization. The effects of various polymerization parameters, such as absorbed dose rate, monomer concentration, stabilizer content, medium polarity, and polymerization temperature on the particle size and size distribution were systematically investigated.  相似文献   

20.
The main objective of the present work was to formulate and optimize a microparticulate sustained release drug delivery system of isoniazid by using a novel, alkaline extracted ispaghula husk as a polymer. Isoniazid microspheres of alkaline extracted ispaghula husk were prepared by emulsification internal ionic gelation method. Results of preliminary trials indicated that the polymer concentration, cross-linking agent and stirring speed had a noticeable effect on size and surface morphology. A four-factor three-level Box-Behnken design was employed to study the effect of independent variables on dependent variables. The particle size and entrapment efficiency varied from 30.75 to 61.78 µm and 62.27% to 85.80% respectively, depending on the polymer concentration, concentration of cross-linker and stirring speed. Optimized microspheres batch based on point prediction tool of design software exhibited 83.43% drug entrapment and 51.53 µm particle size with 97.80% and 96.37% validity, respectively at the following conditions: sodium alginate (3.55% w/v), alkaline extracted ispaghula husk (3.60% w/v), cross-linker concentration (7.82% w/v), and stirring speed (1200 rpm). The optimized formulation showed controlled drug release for more than 12 hours. The drug release followed Higuchi kinetics via a non-Fickian diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号