首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 175 毫秒
1.
通过分子设计, 用过量丁二酸酐将单硬酯酸甘油酯的两个羟基转变为羧基, 再以辛酸亚锡为催化剂, 二苯醚为共沸脱水剂, 使其进一步与不同分子量的端羟基聚乙二醇在负压下共沸脱水偶联, 成功地制备了一系列AB2星型杂臂共聚物, 并采用1H NMR、XRD、DSC、FTIR和偏光显微镜等手段对产物及其结晶行为进行了研究. 1H NMR测试结果表明, 所得聚合物是以二丁二酸甘油酯为核, 一条硬酯酸烷基(GMS)臂和两条聚乙二醇(PEG)臂构成的AB2星型杂臂共聚物[GMS-(SA-PEG)2]. DSC和XRD测试结果表明, 在GMS-(SA-PEG)2中, GMS臂和PEG臂都能结晶; GMS臂的存在不仅影响PEG臂的结晶速度, 同时也影响其结晶的完善程度, 导致结晶温度和结晶熔融温度发生变化; GMS臂相对含量越大, 对PEG结晶行为的影响也越大. 利用偏光显微镜对结晶过程的在线观察结果表明, GMS-(SA-PEG)2的结晶形貌不同于线型聚乙二醇的大球晶, 其先形成细碎的束状晶核, 然后逐步出现生长中的球晶结构, 最后所形成的晶体尺寸有大幅度的减小, 而且其形貌和PEG臂的分子量密切相关. 可见AB2星型杂臂共聚物的结晶是先由GMS臂结晶形成小晶核, 然后再诱导PEG臂球晶的生长. 杂臂的引入对于控制星型多臂共聚物的晶形、晶貌具有重要意义.  相似文献   

2.
吕飞  张薇 《高分子通报》2014,(10):28-33
可逆加成-断裂链转移(reversible addition-fragmentation chain transfer,RAFT)聚合是一种新型的活性/可控自由基聚合方法,在制备窄分子量聚合物和设计聚合物分子结构方面具有独特的优势。本文首先介绍RAFT活性自由基聚合的机理、体系、特点及链转移(RAFT)试剂的选择,然后总结了近年来国内外利用RAFT聚合技术在设计无规和交替共聚物方面的应用,详细介绍了该方法在制备特殊结构共聚物,如嵌段、梯度、接枝、星形、树形和梳形结构聚合物的新应用,并对RAFT聚合技术在今后的研究重点和应用前景做了展望。  相似文献   

3.
乙酰丙酮铁催化丙交酯开环聚合的研究   总被引:7,自引:0,他引:7  
以乙酰丙酮铁 [Fe(acac) 3]为催化剂进行D ,L 丙交酯的开环聚合及在聚乙二醇 (PEG)存在下的开环共聚 ,研究了催化剂用量、反应温度和反应时间对聚合反应的影响以及PEG用量对共聚反应的影响 ,并探讨了丙交酯开环聚合机理 .结果表明 ,Fe(acac) 3是按配位 插入机理催化丙交酯开环聚合的 ;在本文的聚合条件下 ,大部分聚合的单体转化率都达 90 %以上 ,聚合产物的粘均分子量最高可达 6 6 0 0 0 ,均显示出较好的催化性能 .在PEG存在下 ,PEG作为引发剂参入了丙交酯的开环聚合 ,D ,L 丙交酯是沿着PEG分子两端开环聚合的 ,分子链的链端结构是以羟基为端基的乳酰基结构单元 ,Fe(acac) 3有促进PEG参与聚合成酯的作用 .  相似文献   

4.
活性阴离子聚合能够得到分子量及分布可控的模板聚合物,是环状、树枝状以及多臂星形等复杂拓扑结构聚合物的重要合成方法。高真空实验技术能够使反应环境彻底封闭、杜绝杂质影响从而得到更加精确的实验数据,因此成为活性阴离子聚合理论研究的重要手段。本文对基于高真空实验技术的活性阴离子聚合方法学研究进行了总结,通过多官能引发剂、“大单...  相似文献   

5.
聚乙二醇-聚苯乙烯接枝共聚物的合成及其接肽反应性能   总被引:1,自引:0,他引:1  
李赫  梁逊 《高分子学报》1990,(6):740-746
本文应用环氧乙烷在羟乙基树脂上的开环聚合方法,合成了凝胶和大孔型聚乙二醇-聚苯乙烯接枝共聚物(简称PEG树脂)。对不同类型载体的接肽反应动力学性能研究表明,在PEG树脂载体上的反应速度是在氯甲基化树脂上的三倍,与在溶液中进行的接肽反应速率相当。此外,还对载体性能与树脂交联度、骨架结构之间的关系进行了初步探索。  相似文献   

6.
利用本体聚合方法,采用辛酸亚锡为催化剂,四氨基苯基卟啉为引发剂,引发丙交酯开环聚合,制备四臂星型聚乳酸功能高分子材料.采用1 H-NMR,FTIR,GPC等对星型聚合物的分子结构、分子量及其分布等进行了研究.利用溶液浇铸成膜方法,制备了聚乳酸薄膜材料;并利用XRD方法,研究了聚乳酸薄膜的结构.研究表明,利用四氨基苯基卟啉为引发剂,合成了以卟啉为核的四臂星型聚合物,其溶液浇铸薄膜具有正交晶系α晶型结构,而线型聚乳酸呈非晶态结构.利用紫外可见吸收光谱研究了星型聚乳酸的光谱性质,结果表明合成聚合物具有锡卟啉的光学特性.  相似文献   

7.
朱蔚璞  陈伟  沈之荃 《催化学报》2007,28(6):547-550
分别以三乙醇胺和四乙醇乙二胺为引发剂,用三(2,6-二叔丁基-4-甲基苯氧基)镧(La(DBMP)3)作催化剂,催化ε-己内酯开环聚合,制备了三臂和四臂星形聚己内酯.通过1HNMR表征了聚合物的星形结构以及分子量.研究表明,每一个催化剂分子可与多个引发剂分子作用,当三乙醇胺与La(DBMP)3的摩尔比值为1.7~6.4时,均可制得纯净的三臂星形聚己内酯.通过调节ε-己内酯与多元醇的摩尔比值,可以改变星形聚己内酯的分子量,实现聚合产物分子量可控.  相似文献   

8.
以辛酸亚锡为催化剂 ,通过星型聚乙二醇 (PEG)引发ε 己内酯 (CL)开环聚合 ,制备了PEG b PCL嵌段共聚物 ,进一步以丙烯酸酯封端 ,合成了 3种水溶性大分子单体 .以 2 ,2 二甲氧基 2 苯基苯乙酮为引发剂 ,在紫外光作用下 ,大分子单体在水中由于胶束的形成能够迅速聚合形成水凝胶 .利用1 H NMR、FTIR、DSC、TGA、ESEM、凝胶含量、溶胀比等分析测试手段对大分子单体及其形成的水凝胶进行了表征 .结果表明 ,干胶迅速吸水而达到溶胀平衡 ,水凝胶具有较大的溶胀比和高的水含量 ;随着PEG臂数的增加 ,干胶的熔融峰顶温度下降 ,凝胶的溶胀比减小 ;ESEM图片上清晰地表明水凝胶的网络结构  相似文献   

9.
4-PEG接枝苯乙烯-马来酸酐交替共聚物的合成及功能化   总被引:2,自引:0,他引:2  
采用普通自由基聚合和可逆加成一断裂链转移(RAFT)自由基聚合方法合成了对位PEG取代苯乙烯(PEG-g-St)和马来酸酐的交替共聚物(P((PEG—g—St)-alt-MA)),”CNMR分析表明PEG-g-St和马来酸酐单元采取交替的序列结构.利用反应性基团-马来酸酐单元的水解以及胺解可以制备功能性的PEG聚合物.以月桂胺为模型小分子研究了该聚合物的胺解,得到4-PEG-苯乙烯与羧酸基团以及疏水烷烃的交替序列聚合物,该双亲聚合物在水溶液中形成组装体.  相似文献   

10.
可逆加成-断裂链转移(RAFT)聚合作为一种新型活性自由基聚合,由于其具有单体适用面广、操作条件温和、实施聚合的方法多--本体、溶液、乳液、悬浮聚合均可的优点已经在分子设计方面取得了广泛的应用.星形聚合物作为一种特殊结构的聚合物,由于其具有较低的结晶度、较小的流体动力学体积等独特的性质,越来越引起研究者的重视.本文综述了近几年来采用RAFT法合成星形聚合物的研究进展.根据合成星形聚合物所用的RAFT多官能团试剂种类,对RAFT法合成星形聚合物的反应进行了分类.  相似文献   

11.
Summary: Oligo(ethylene glycol) methacrylate (OEGMA) was grafted from silicon wafer surfaces by surface‐initiated atom transfer radical polymerization (ATRP) with CuI Br/2,2′‐bipyridine (bpy) as a catalyst and various water/alcohol mixtures as solvents. The ellipsometric thickness of the poly(OEGMA) layer on the surface increased linearly with monomer conversion in solution. High graft densities were achieved in alcohols. The graft density of poly(OEGMA) in methanol was found to be 0.26 chains · nm−2, which is 50% higher than that in water/methanol (30:70, v/v). The differences in graft density were correlated to the conformation of tethered poly(OEGMA) chains. Large poly(OEGMA) coils on the surface in the presence of water limited the access of initiation sites to the catalyst complex and monomer molecules.

Development of poly(OEGMA) layer thickness on the silicon surface vs monomer conversion.  相似文献   


12.
In this work, living radical polymerizations of a water‐soluble monomer poly(ethylene glycol) monomethyl ether methacylate (PEGMA) in bulk with low‐toxic iron catalyst system, including iron chloride hexahydrate and triphenylphosphine, were carried out successfully. Effect of reaction temperature and catalyst concentration on the polymerization of PEGMA was investigated. The polymerization kinetics showed the features of “living”/controlled radical polymerization. For example, Mn,GPC values of the resultant polymers increased linearly with monomer conversion. A faster polymerization of PEGMA could be obtained in the presence of a reducing agent Fe(0) wire or ascorbic acid. In the case of Fe(0) wire as the reducing agent, a monomer conversion of 80% was obtained in 80 min of reaction time at 90 °C, yielding a water‐soluble poly(PEGMA) with Mn = 65,500 g mol?1 and Mw/Mn = 1.39. The features of “living”/controlled radical polymerization of PEGMA were verified by analysis of chain‐end and chain‐extension experiments. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
The synthesis of a fluorinated macroinitiator for copper-catalyzed atom transfer radical polymerization (ATRP) is reported, as well as its use for the controlled living polymerization of poly(propylene glycol) methacrylate (PPGM) in MEK at 80 °C. The ATRP system used was efficient for polymerization of the functionalized monomer and the molecular weight of the polymer estimated by NMR spectroscopy was in close agreement with the theoretical molecular weight, as expected for controlled processes. The statistical copolymerization of PPGM or methyl ether poly(ethylene glycol) methacrylate (MPEGMA) with a perfluoroalkyl ethyl methacrylate by copper-mediated ATRP was also investigated and led to copolymers with essentially random incorporation of monomers. The syntheses and characterization of star-like homopolymers of MPEGMA or the fluorinated monomer via ATRP are also reported, as well as an amphiphilic star-like block copolymer containing ethyleneglycol units as the core and fluorinated moieties in the shell. The micellar behavior of this copolymer was investigated as a function of the external environment.  相似文献   

14.
许文静  张文生  闫金龙  李伟  申国玉 《应用化学》2011,28(10):1143-1147
在醋酸乙烯酯的普通自由基聚合体系中加入少量碘(质量分数为0.57%~0.86%),用偶氮二异丁腈作引发剂合成聚醋酸乙烯酯,对其聚合反应的动力学及反应机理进行了研究。 考察了碘质量分数对聚合反应速率、聚合物分子量及分子量分布的影响,发现随着碘浓度的增加,聚合物分子量及分子量分布得到更好的控制;对聚合过程进行了核磁跟踪,考察了聚合过程中几种化合物的变化情况,特别是初级自由基与碘生成的加合物A-I(A来自引发剂分裂后产生的自由基)及单体加合物A-Mn-I(M代表单体单元)的变化情况;对聚合物结构作了详细的1H NMR分析,结果表明,聚合过程中分子量随时间延长而逐渐增大,分子量分布随单体转化率增加而变窄,聚合终期,单体转化率达到80%左右时,所得聚合物分子量分布窄(Mw/Mn≤1.41),且含有碘端基。该方法的自由基聚合具有活性/可控的性质。  相似文献   

15.
A well‐defined amphiphilic copolymer brush with poly(ethylene oxide) as the main chain and polystyrene as the side chain was successfully prepared by a combination of anionic polymerization and atom transfer radical polymerization (ATRP). The glycidol was first protected by ethyl vinyl ether to form 2,3‐epoxypropyl‐1‐ethoxyethyl ether and then copolymerized with ethylene oxide by the initiation of a mixture of diphenylmethylpotassium and triethylene glycol to give the well‐defined polymer poly(ethylene oxide‐co‐2,3‐epoxypropyl‐1‐ethoxyethyl ether); the latter was hydrolyzed under acidic conditions, and then the recovered copolymer of ethylene oxide and glycidol {poly(ethylene oxide‐co‐glycidol) [poly(EO‐co‐Gly)]} with multiple pending hydroxymethyl groups was esterified with 2‐bromoisobutyryl bromide to produce the macro‐ATRP initiator [poly(EO‐co‐Gly)(ATRP). The latter was used to initiate the polymerization of styrene to form the amphiphilic copolymer brushes. The object products and intermediates were characterized with 1H NMR, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, Fourier transform infrared, and size exclusion chromatography in detail. In all cases, the molecular weight distribution of the copolymer brushes was rather narrow (weight‐average molecular weight/number‐average molecular weight < 1.2), and the linear dependence of ln[M0]/[M] (where [M0] is the initial monomer concentration and [M] is the monomer concentration at a certain time) on time demonstrated that the styrene polymerization was well controlled. This method has universal significance for the preparation of copolymer brushes with hydrophilic poly(ethylene oxide) as the main chain. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4361–4371, 2006  相似文献   

16.
Linear, star, and block copolymers based on poly(vinyl pyrrolidone) (PVP) were synthesized with the macromolecular design via the interchange of xanthates (MADIX) process for use as potential stabilizers in suspension polymerization. The design of the leaving group of the dithioxanthate‐based transfer agent was shown to be key to the successful preparation of well‐defined PVP architectures. A linear correlation of the monomer conversion and molecular weight was found in the synthesis of star polymers, whereas the molecular weight distribution remained narrow (polydispersity index < 1.3). Significant side reactions, which typically broaden the molecular weight distribution when R‐designed MADIX agents are used, were absent. The living behavior of the PVP polymerization was furthermore confirmed via chain extension with vinyl acetate, which resulted in the formation of PVP–PVAc block copolymers [where PVAc is poly(vinyl acetate)]. The prepared polymers were used as stabilizers in suspension polymerization to prepare crosslinked poly(vinyl neodecanoate)/ethylene glycol dimethacrylate microspheres. The ratio of the interfacial tension of the aqueous and monomer phases and the overall viscosity were found to have an effect on the diameter of the particles, with PVP star polymers as stabilizers resulting in smaller particles. A smaller interfacial tension, measured when star polymers and block copolymers were used, resulted in the appearance of smaller particles, probably because of more breakup events of the monomer droplets and the enhanced stabilization of the particle surface area. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4372–4383, 2006  相似文献   

17.
In this work, the influence of three different initiators (KOH, KOH dissolved in ethanol and the potassium salt of ethylene glycol) on the propylene oxide polymerization was studied by experimental and theoretical methods. A first series of reactions was carried out to establish the adequate thermal conditions for a minimal monomer transfer during the polymerization. The formation of end insaturations (main consequence of the monomer transfer interference) in the poly(propylene oxide) chains was studied by spectroscopic methods. Furthermore, a second series of poly(propylene oxide)s was prepared by using the mentioned initiators, and characterized by size exclusion chromatography. The initiator efficiency to create active centers in every reactive system was determined from the molecular weight and the conversion data obtained. Experimental results were elucidated by using quantum chemical calculations at density functional theory level, involving thermo-chemistry parameters, and the simulation of the infrared, and 13C nuclear magnetic resonance spectra. This method led to studying the addition of up to ten propylene oxide unit, resulting into important energetic tendencies and regioselectivity, being compared to the physicochemical data of products obtained. These correlations meant further understanding of the reaction course and the type of products obtained, depending on the nature of the initiator.  相似文献   

18.
The atom transfer radical polymerization of methyl methacrylate (MMA) and n‐butyl methacrylate (n‐BMA) was initiated by a poly(ethylene oxide) chloro telechelic macroinitiator synthesized by esterification of poly(ethylene oxide) (PEO) with 2‐chloro propionyl chloride. The polymerization, carried out in bulk at 90 °C and catalyzed by iron(II) chloride tetrahydrate in the presence of triphenylphosphine ligand (FeCl2 · 4H2O/PPh3), led to A–B–A amphiphilic triblock copolymers with MMA or n‐BMA as the A block and PEO as the B block. A kinetic study showed that the polymerization was first‐order with respect to the monomer concentration. Moreover, the experimental molecular weights of the block copolymers increased linearly with the monomer conversion, and the molecular weight distribution was acceptably narrow at the end of the reaction. These block copolymers turned out to be water‐soluble through the adjustment of the content of PEO blocks (PEO content >90% by mass). When the PEO content was small [monomer/macroinitiator molar ratio (M/I) = 300], the block copolymers were water‐insoluble and showed only one glass‐transition temperature. With an increase in the concentration of PEO (M/I = 100 or 50) in the copolymer, two glass transitions were detected, indicating phase separation. The macroinitiator and the corresponding triblock copolymers were characterized with Fourier transform infrared, proton nuclear magnetic resonance, size exclusion chromatography analysis, dynamic mechanical analysis, and differential scanning calorimetry. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5049–5061, 2005  相似文献   

19.
Frontal polymerization (FP) of poly(ethylene glycol) diacrylate (PEGDA) was carried out using benzoyl peroxide (BPO) as radical initiator. In addition, a pyrene containing monomer, 1‐pyrenebutyl acrylate (PyBuAc), was incorporated as a fluorescent probe in order to obtain luminescent materials with different chromophore contents. The resulting polymers were characterized by FT‐IR spectroscopy in the solid state and their thermal properties were determined by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Moreover, the optical properties of these materials were studied by absorption and fluorescence spectroscopy. The maximum amount of the incorporated pyrene‐containing monomer into the polymer matrix was limited to 1 wt % by the polymerization process. The obtained labeled polymers poly(PEGDA‐co‐PyBuAc) exhibited a broad absorption band at 345 nm. The fluorescence spectra of these polymers exhibited mainly “monomer emission” so that no excimer emission was observed. It is possible to tune the color of the emitted light by varying the pyrene content in the samples. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2890–2897  相似文献   

20.
Monodisperse, thermosensitive poly(N‐ethyl methacrylamide) microgel particles were prepared by the batch precipitation/emulsion polymerization of water‐soluble N‐ethyl methacrylamide and the hydrophobic crosslinker ethylene glycol dimethacrylate initiated by potassium persulfate. Particular attention was paid to the effect of the crosslinker agent on the polymerization process (kinetics, conversion, and water‐soluble oligomer content). Particles were characterized in terms of their size distribution and swelling capacity. A polymerization mechanism for the water‐soluble monomer and non‐water‐soluble crosslinker is proposed and discussed on the basis of a combination of both emulsion and precipitation polymerization processes. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1808–1817, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号