首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 390 毫秒
1.
溶胶-凝胶法制备Li3V2(PO4)3及其性能研究   总被引:6,自引:0,他引:6       下载免费PDF全文
0引言具有类NASICON结构的Li3V2(PO4)3是继过渡金属氧化物LMO后的一种新型的锂离子二次电池正极材料。与目前市场上应用最为广泛的正极材料LiCoO2相比,Li3V2(PO4)3具有超常的稳定性,即使在脱出的Li 与过渡金属原子的物质的量之比大于1的时候仍然具有超乎寻常的稳定性,而通常情况下1mol LiCoO2在脱出0.5mol Li 就会变得不稳定。并且Co是一种战略物资,全球储量十分有限;Co也是一种有毒金属,对于环境污染较为严重。LiNiO2因其合成较为困难而使应用受限,尖晶石LiMn2O4虽然属于环境友好型化合物,但其理论比容量仅为148mAh·g-1,且…  相似文献   

2.
通过机械活化将快离子导体Li3 V2(PO4)3包覆在LiFePO4 表面, 制备了性能优异的复合正极材料9LiFePO4@Li3 V2(PO4)3. 用XRD, SEM, HRTEM, EDS和电化学测试等手段研究了材料的物理化学性能. 结果表明, 包覆后的材料含有橄榄石结构的LiFePO4、单斜晶系的Li3 V2(PO4)3 和正交晶系的Li3 PO4; LiFePO4颗粒表面包覆了一层Li3 V2(PO4)3, 且部分V3+进入LiFePO4晶格内部, 使其晶格参数减小, 包覆后的LiFePO4的交换电流密度和锂离子扩散系数均提高了1个数量级. 电化学测试结果表明, 包覆后的LiFePO4的倍率性能及循环性能都得到显著改善, 在1C和2C倍率下, 包覆后的LiFePO4的首次放电比容量较包覆前分别提高了34.09%和78.97%, 经150次循环后容量保持率分别提高了27.77%和65.54%; 并且5C时容量为121.379 mA·h/g(包覆前LiFePO4在5C下几乎没有容量), 循环350次后的容量保持率高达94.03%.  相似文献   

3.
锂离子电池具有比能量高、功率大、使用寿命长、无记忆效应、性能价格比高等优点,从而成为可充式电源的主要选择对象.锰由于资源丰富、价廉、环境友好等优点,使锰酸锂(LiMn2O4)成为最有希望取代钴酸锂的正极材料.但锰酸锂的放电容量相对较低,结构欠稳定,容量衰减严重,作为正极材料还无法与钴酸锂相比,近年来做了大量的研究工作以改善它的电化学性能[1~6].最近Youngjoon Shin等研究发现[7]用少量的Li与Ni共同替代LiMn2O4中的Mn得到的LiMn2-2yLiyNiyO4的电化学性能要优于单元素替代的LiMn2-xMxO4(M=Li,Cr,Fe,Co,Ni)的电化学性能.  相似文献   

4.
空气中合成M2B4O7:Eu3+(M=Na,K)荧光体及其性质表征   总被引:7,自引:0,他引:7  
以M2B4O7(M=Na,K)为基质,在空气中掺杂稀土元素Eu3+得到了Na2B4O7:Eu3+和K2B4O7:Eu3+荧光体.探讨了体系的烧结条件和荧光性质,分析了晶体的结构.结果表明,虽然两种体系的最佳合成条件不同,但是体系中都同时存在[BO4]和[BO3]结构;稀土离子Eu3+的发光以电偶极跃迁5D0-7F2为主,处于非中心对称的格位上,并且可以很好地存在于基质中,Na2B4O7:Eu3+具有较强的发光强度.  相似文献   

5.
LiMn2O4表面包覆Li4Ti5O12的制备及倍率特性   总被引:1,自引:0,他引:1       下载免费PDF全文
采用固相法合成了尖晶石型LiMn2O4,并通过溶胶-凝胶法制备了不同物质的量的百分比含量Li4Ti5O12包覆的正极材料。X-射线衍射和扫描电镜结果表明,Li4Ti5O12微粒包覆在LiMn2O4的表面没有产生晶体结构的变化。实验电池在室温下,以1C,2C和5C倍率作充放电循环测试;结果表明,与未包覆的LiMn2O4相比,表面包覆Li4Ti5O12微粒的正极材料在高倍率下具有更好的循环稳定性。  相似文献   

6.
采用传统固相反应工艺,按化学计量比合成BaO-Al_2O3-SiO_2(BAS)-x%(w/w) Li_2O-Na_2O-B_2O3-SiO_2(LNBS)(x=0,1,2,3,4)陶瓷。研究不同LNBS烧结助剂添加量对BAS系微波介质陶瓷的结构和介电性能的影响。通过Clausius-Mossotti公式计算讨论了BAS理论与实验介电常数(εr)的差异。研究结果表明:LNBS烧结助剂中Li+进入钡长石Al3+位或单四元环(S4R)间隙,并产生了O_2-空位或Ba2+空位,从而促进BAS六方相向单斜相的转变。添加适量的LNBS烧结助剂后,BAS陶瓷的烧结温度从1 400℃降低到1 325℃,同时BAS陶瓷样品密度、品质因数(Qf)值以及频率温度系数(τf)得到改善。当x=1,烧结温度为1 325℃时,可获得综合性能相对较好的BAS陶瓷,其介电性能:Qf=35 199 GHz,εr=6.37,τf=-1.613×10-5℃-1。  相似文献   

7.
随着稀薄燃烧(lean-burn)发动机的推广使用和环保法规的日趋严格,消除稀燃尾气中的氮氧化物(N O x)已刻不容缓。N O x储存还原技术被认为是最具应用前景的方法之一[1,2]。目前,对Pt/BaA l2O4-A l2O3体系中N O x储存与还原机制的研究较多[1 ̄4],但对该体系中微量铂物种微观结构及其与性能的关系研究较少,这主要是由于Pt含量(0.1w t% ̄0.5wt%)太低,分散度较高,使表征方法受到很大限制。本文采用共沉淀-浸渍法制得具有较高比表面积和热稳定性的N O x储存还原催化剂Pt/BaA l2O4-A l2O3,应用荧光X-射线吸收精细结构方法(Fluores-cence-…  相似文献   

8.
新型锂离子电池正极材料Li0.86V0.8O2的水热合成及性质   总被引:1,自引:1,他引:0  
采用两步反应制备了新型锂离子电池正极材料Li0.86V0.8O2. 该材料具有六方层状结构, 空间群为R3m. 研究了在水热条件下溶液的碱度对于钒酸锂盐形成的影响, 在低碱度的条件下, 前驱体V2O3和LiOH·H2O并未发生反应, 只有在碱度达到2.5 mol/L时, 才能形成单相的Li0.86V0.8O2材料. X射线光电子能谱分析发现, V2p的结合能位于516.4 和523.1 eV, 分别对应于四价钒离子的V2p3/2 和V2p1/2, 这说明在Li0.86V0.8O2中V离子主要价位为+4价. 在电流密度为7.4 mA/g的充放电中, Li0.86V0.8O2初始充电容量达到163 mA·h/g, 首次放电容量也能达到113 mA·h/g, 20次循环后放电容量仍然可以达到80 mA·h/g, 表现出较好的循环性能.  相似文献   

9.
采用两步干混-球磨方法制备了石墨烯掺杂改性的锂离子电池LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2复合正极材料,实现LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料的高容量和高安全性。借助X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)以及电化学测试等表征手段对材料的晶体结构、微观形貌和电化学性能进行了较系统的研究。结果表明,石墨烯的存在实现了Li Fe PO4材料在LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料表面的完全包覆,形成致密的包覆层,进一步抑制LiNi_(0.8)Co_(0.15)Al_(0.05)O_2与电解液之间的副反应,提高活性材料利用率和循环性能。三者之间构成导电网络,加快电子渗透和传输,提高倍率性能。Li Fe PO4质量分数为20%的Li Fe PO4-Graphene/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品具有最佳的容量性能和长循环性能,0.1C时放电容量达到202.5 m Ah·g~(-1),3C时放电容量仍然可保持在160.5 m Ah·g~(-1)。50℃在2.8~4.3 V,0.5C下循环100次后,容量保持率为91.9%,优于LiNi_(0.8)Co_(0.15)Al_(0.05)O_2和LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品的72.9%和82.0%。  相似文献   

10.
随着大气中CO2浓度的增加,温室效应日趋严重,促使人们对大气中CO2的转化与消除这一课题更加重视。1990年Yutaka Tamaura[1]发现氧缺位磁铁矿几乎可以100%分解CO2后,为解决温室效应提供了一条新的探索途径。通过对不同铁酸盐MFe2O4(M=Fe,Mn[2],Co[3],Zn[4],Ni[5]等)分解CO2活性的考察,发现铁酸镍在300℃分解CO2的活性比其它铁酸盐都好。NiFe2O4的制备最常采用的是共沉淀法、柠檬酸溶胶凝胶法和水热法,3种方法由于制备  相似文献   

11.
The lithium-ion-conducting inorganic solid electrolytes in the oxide systems Li2O-SiO2-P2O5 and Li2O-TiO2-SiO2-P2O5 were prepared by the solid-state reaction, and the electrolyte pellet made by cold-pressing method had diameter of 13 mm and was about 1 mm thick. Phase identification and surface morphology of the products were carried out by X-ray diffraction and scanning electron microscopy. Ionic conductivity of the pellets was investigated through ac impedance. The results show that the adding of other cations can improve the ionic conductivity of the solid electrolyte, and the sintering temperature and duration can influence the ionic conductivity. The maximum ionic conductivity in the samples is 9.9 × 10−4 S/cm in the Li2O-TiO2-SiO2-P2O5 system. Original Russian Text ? W. Li, M. Wang, Z.H. Li, X.F. Shang, H. Wang, Y.W. Wang, Y.B. Xu, 2007, published in Elektrokhimiya, 2007, Vol. 43, No. 11, pp. 1341–1345.  相似文献   

12.
Garnet-structure related metal oxides with the nominal chemical composition of Li5La3Nb2O12, In-substituted Li5.5La3Nb1.75In0.25O12 and K-substituted Li5.5La2.75K0.25Nb2O12 were prepared by solid-state reactions at 900, 950, and 1000 °C using appropriate amounts of corresponding metal oxides, nitrates and carbonates. The powder XRD data reveal that the In- and K-doped compounds are isostructural with the parent compound Li5La3Nb2O12. The variation in the cubic lattice parameter was found to change with the size of the dopant ions, for example, substitution of larger In3+(rCN6: 0.79 Å) for smaller Nb5+ (rCN6: 0.64 Å) shows an increase in the lattice parameter from 12.8005(9) to 12.826(1) Å at 1000 °C. Samples prepared at higher temperatures (950, 1000 °C) show mainly bulk lithium ion conductivity in contrast to those synthesized at lower temperatures (900 °C). The activation energies for the ionic conductivities are comparable for all samples. Partial substitution of K+ for La3+ and In3+ for Nb5+ in Li5La3Nb2O12 exhibits slightly higher ionic conductivity than that of the parent compound over the investigated temperature regime 25-300 °C. Among the compounds investigated, the In-substituted Li5.5La3Nb1.75In0.25O12 exhibits the highest bulk lithium ion conductivity of 1.8×10−4 S/cm at 50 °C with an activation energy of 0.51 eV. The diffusivity (“component diffusion coefficient”) obtained from the AC conductivity and powder XRD data falls in the range 10−10-10−7 cm2/s over the temperature regime 50-200 °C, which is extraordinarily high and comparable with liquids. Substitution of Al, Co, and Ni for Nb in Li5La3Nb2O12 was found to be unsuccessful under the investigated conditions.  相似文献   

13.
A new system of electrolytes has been developed and studied for lithium-ion batteries. This new system is based on the interactions between Li2O or Li2O2 and tris(pentafluorophenyl) borane (TPFPB) in carbonate based organic solvents. This opens up a completely new approach in developing non-aqueous electrolytes. In general, the solubility of Li2O or Li2O2 is very low in organic solvents and the ionic conductivities of these solutions are almost undetectable. By adding certain amount of tris(pentafluorophenyl) borane (TPFPB), one type of boron based anion receptors (BBARs), the solubility of Li2O or Li2O2 in carbonate based solvents was significantly enhanced. In addition, the Li+ transference numbers of these new electrolytes measured were as high as 0.7, which are more than 100% higher than the values for the conventional electrolytes for lithium-ion batteries. The room-temperature conductivities are around 1 × 10−3 S/cm. These new electrolytes are compatible with LiMn2O4 cathode for lithium-ion batteries.  相似文献   

14.
Li4Ti5O12/(Ag+C)电极材料的固相合成及电化学性能   总被引:1,自引:0,他引:1  
以Li2CO3,TiO2为原料,葡萄糖为碳源,采用固相煅烧工艺合成了亚微米级的Li4Ti5O12/C复合负极材料。并将之与AgNO3复合,采用固相方法制备出了Ag表面修饰的Li4Ti5O12/(Ag+C)复合材料。采用XRD、SEM和TEM测试方法对材料的微结构进行了表征。结果表明,C的存在对Ag单质在Li4Ti5O12/C颗粒表面的大量形成起到了积极的促进作用,从而很大程度地提高了Li4Ti5O12/C的电导率,因此有效地改善了其电化学性能。在1C倍率下,Li4Ti5O12/(Ag+C)复合材料的首次放电容量达到了164 mAh·g-1。  相似文献   

15.
Li4Ti5O12/(Cu+C)复合材料的制备及电化学性能   总被引:1,自引:0,他引:1  
以Li4Ti5O12,Cu(CH3COO)2·H2O和C6H12O6为前驱体,化学沉积与热分解结合合成锂离子电池负极材料Li4Ti5O12/(Cu+C)。采用X-射线衍射(XRD)、扫描电子显微镜(SEM)、恒流充放电、循环伏安和电化学阻抗方法表征样品的结构、形貌和电化学性能。结果表明,Li4Ti5O12表面包覆的Cu与C提高了Li4Ti5O12电极材料的导电率,其循环性能和倍率性能得到有效地改善。在0.5C、1C和3C倍率下,经过50次充放电循环,放电比容量分别为168.2、160、140.6 mAh·g-1,其容量保持率分别为88.7%、84.4%、71.2%。电化学阻抗测试表明,表面包覆的Cu与C使其电荷转移阻抗大幅度减少。  相似文献   

16.
Li4Ti5O12 thin films for rechargeable lithium batteries were prepared by a sol-gel method with poly(vinylpyrrolidone). Interfacial properties of lithium insertion into Li4Ti5O12 thin film were examined by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and potentiostatic intermittent titration technique (PITT). Redox peaks in CV were very sharp even at a fast scan rate of 50 mV s−1, indicating that Li4Ti5O12 thin film had a fast electrochemical response, and that an apparent chemical diffusion coefficient of Li+ ion was estimated to be 6.8×10−11 cm2 s−1 from a dependence of peak current on sweep rates. From EIS, it can be seen that Li+ ions become more mobile at 1.55 V vs. Li/Li+, corresponding to a two-phase region, and the chemical diffusion coefficients of Li+ ion ranged from 10−10 to 10−12 cm2 s−1 at various potentials. The chemical diffusion coefficients of Li+ ion in Li4Ti5O12 were also estimated from PITT. They were in a range of 10−11-10−12 cm2 s−1.  相似文献   

17.
以乙酰丙酮(ACAC)为螯合剂、聚乙二醇(PEG)为分散剂,采用溶胶-凝胶法合成了尖晶石型Li4Ti5Ol2/TiN材料.考察了TiN膜对尖晶石型Li4Ti5Ol2锂离子电池负极材料电化学性能的影响.利用X射线光电子能谱(XPS)对Li4Ti5O12表面的TiN膜进行了分析.X射线衍射(XRD)和扫描电子显微镜(SEM)分析表明,Li4Ti5Ol2/TiN材料为结晶良好的亚微米纯相尖晶石型钛酸锂.电化学性能测试表明,该材料的首次放电比容量为173.0mAh·g-1,并且具有良好的循环性能,以0.2C、1C、2C、5C倍率放电进行测试,10次循环后比容量分别为170.6、147.6、135.6、111.0mAh·g-1,较之表面无TiN膜的钛酸锂材料表现出更好的倍率特性.循环伏安曲线(CV),交流阻抗图谱(EIS)进一步论证了TiN膜改善了尖晶石型Li4Ti5Ol2锂离子电池负极材料的电化学性能.  相似文献   

18.
固态电解质是固态电池中的关键材料,开发具有高离子电导率、高化学/电化学稳定性、电极兼容性良好的固态电解质正成为研究热点。硫化物固态电解质相较其它固态电解质具有更高的离子电导率和良好的机械加工性能等优势,是最有前景实现实用化的固态电解质之一。在众多硫化物固态电解质中,Li7P3S11因其高的离子电导率和较低的原料成本而极具研究意义。本文首先介绍了Li7P3S11电解质的结构、Li+传导机理及合成路径;其次,针对该电解质的电导率提高、空气/水稳定性提升、固固界面稳定性及电解质自身稳定性改善等问题,综述了目前常用的改性策略研究;再次,总结了基于Li7P3S11电解质的全固态锂离子电池和全固态锂硫电池的构筑;最后,本文分析了Li7P3S11电解质的研究和应用面临的挑战,并指出该电解质未来发展的趋势。  相似文献   

19.
The ternary system Li2O-Al2O3-B2O3 is reinvestigated with solid-state reaction and X-ray powder diffraction technique to clarify some long-standing uncertainties. The phase relations are constructed based on the phase identifications of 51 ternary samples. Six ternary compounds, Li2AlB5O10, LiAlB2O5, Li3AlB2O6, Li2AlBO4, LiAl7B4O17 and a compound with a composition close to 0.66Li2O·0.06Al2O3·0.28B2O3, are observed or confirmed in this system, and the thermal stability of these ternary compounds is also discussed on the basis of DTA experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号